-
Previous Article
Optimal sterile insect release for area-wide integrated pest management in a density regulated pest population
- MBE Home
- This Issue
-
Next Article
The global stability of an SIRS model with infection age
A metapopulation model for sylvatic T. cruzi transmission with vector migration
1. | Dallas Baptist University, 3000 Mountain Creek Pkwy, Dallas, TX 75211, United States |
2. | UT Arlington Mathematics Dept, Box 19408, Arlington, TX 76019-0408, United States |
References:
[1] |
Y. Benoist, P. Foulon and F. Labourie, Flots d'Anosov a distributions stable et instable differentiables,, (French) [Anosov flows with stable and unstable differentiable distributions], 5 (1992), 33.
doi: 10.2307/2152750. |
[2] |
N. Añez and J. S. East, Studies on Trypanosoma rangeli Tejera 1920 II. Its effect on feeding behaviour of triatomine bugs,, Acta tropica, 41 (1984), 93. Google Scholar |
[3] |
L. J. Allen, C. L. Wesley, R. D. Owen, D. G. Goodin, D. Koch, C. B. Jonsson, Y. Chu, J. M. Hutchinson and R. L. Paige, A habitat-based model for the spread of hantavirus between reservoir and spillover species,, Journal of Theoretical Biology, 260 (2009), 510.
doi: 10.1016/j.jtbi.2009.07.009. |
[4] |
J. Arino, J. R. Davis, D. Hartley, R. Jordan, J. M. Miller and P. van den Driessche, A multi-species epidemic model with spatial dynamics,, Mathematical Medicine and Biology, 22 (2005), 129.
doi: 10.1093/imammb/dqi003. |
[5] |
C. B. Beard, G. Pye, F. J. Steurer, R. Rodriguiz, R. Campman, A. Townsend Peterson, J. Ramsey, R. A. Wirtz and L. E. Robinson, Chagas Disease in a domestic transmission cycle in southern Texas, USA,, Emerging Infectious Diseases, 9 (2003), 103.
doi: 10.3201/eid0901.020217. |
[6] |
C. Bern and S. P. Montgomery, An estimate of the burden of Chagas disease in the United States,, Clinical Infectious Diseases, 49 (2009), 52.
doi: 10.1086/605091. |
[7] |
T. W. Box, Density of plains wood rat dens on four plant communities in south Texas,, Ecology, 40 (1959), 715. Google Scholar |
[8] |
F. Brauer, C. Castillo-Chavez and J. X. Velasco-Hernández, Recruitment effects in heterosexually transmitted disease models,, International Journal of Applied Science and Computation, 3 (1996), 78. Google Scholar |
[9] |
J. K. Braun and M. A. Mares, Neotoma micropus,, Mammalian Species, 330 (1989), 1.
doi: 10.2307/3504233. |
[10] |
J. E. Burkholder, T. C. Allison and V. P. Kelly, Trypanosoma cruzi (Chagas) (Protozoa: Kinetoplastida) in invertebrate, reservoir, and human hosts of the Lower Rio Grande Valley of Texas,, Journal of Parasitology, 66 (1980), 305.
doi: 10.2307/3280824. |
[11] |
Centers for Disease Control and Prevention (2012), Chagas Disease,, Retrieved from , (). Google Scholar |
[12] |
A. Cherif, V. Garcia Horton, G. Melendez Rosario and W. Feliciano, A Tale of Two Regions: A Mathematical Model for Chagas' Disease,, MTBI Technical Report MTBI 05-05M. Arizona State University 2008., (2008), 05. Google Scholar |
[13] |
C. G. Clark and O. J. Pung, Host specificity of ribosomal DNA variation in sylvatic Trypanosoma cruzi from North America,, Molecular and Biochemical Parisitology, 66 (1994), 175. Google Scholar |
[14] |
S. A. Conditt and D. O. Ribble, Social organization of Neotoma micropus, the southern plains woodrat,, Am. Midl. Nat., 137 (1996), 290. Google Scholar |
[15] |
B. A. Crawford and C. M. Kribs-Zaleta, Vector migration and dispersal rate for sylvatic T. cruzi transmission,, Ecological Complexity, 14 (2013), 145. Google Scholar |
[16] |
S. I. Curto de Casas and R. U. Carcavallo, Climate change and vector-borne diseases distribution,, Social Science and Medicine, 40 (1995), 1437. Google Scholar |
[17] |
P. L. Dorn, C. Monroy and A. Curtis, Triatoma dimidiata (Latreille, 1811): A review of its diversity across its geographic range and the relationship among populations,, Infection, 7 (2007), 343. Google Scholar |
[18] |
R. B. Eads, H. A. Trevino and E. G. Campos, Triatoma (Hemiptera: Reduviidae) Infected with Trypanosoma Cruzi in south Texas wood rat dens,, The Southwestern Naturalist, 8 (1963), 38. Google Scholar |
[19] |
E. K. Fritzell and K. J. Haroldson, Urocyon cinereoargenteus,, Mammalian Species, 189 (1982), 1.
doi: 10.2307/3503957. |
[20] |
S. D. Gehrt and E. K. Fritzell, Duration of familial bonds and dispersal patterns for raccoons in south Texas,, J. Mammalogy, 79 (1998), 859.
doi: 10.2307/1383094. |
[21] |
S. Gourbiére, E. Dumonteil, J. E. Rabinovich, R. Minkoue and F. Menu, Demographic and dispersal constraints for domestic infestation by non-domicilated Chagas disease vectors in the Yucatan Peninsula, Mexico,, American Journal of Tropical Medicine and Hygiene, 78 (2008), 133. Google Scholar |
[22] |
J. M. Gurevitz, L. A. Ceballos, U. Kitron and R. E. Gürtler, Flight initiation of Triatoma Infestans (Hemiptera: Reduviidae) under natural climatic conditions,, Journal of Medical Entomology, 43 (2006), 143. Google Scholar |
[23] |
E. J. Hanford, F. B. Zhan, Y. Lu and A. Giordano, Chagas disease in Texas: Recognizing the significance and implications of evidence in the literature,, Social Science and Medicine, 65 (2007), 60.
doi: 10.1016/j.socscimed.2007.02.041. |
[24] |
M. Harry, F. Lema and C. A. Romaña, Chagas' disease challenge,, The Lancet, 355 (2000).
doi: 10.1016/S0140-6736(05)72114-0. |
[25] |
J. O. Ikenga and J. V. Richerson, Trypanosoma cruzi (Chagas) (Protozoa: Kinetoplastida: Trypanosomatidae) in invertebrate and vertebrate hosts from Brewster County in Trans-Pecos Texas,, Journal of Economic Entomology, 77 (1984), 126. Google Scholar |
[26] |
S. A. Kjos, K. F. Snowden and J. Olson, Biogeography and Trypanosoma cruzi infection prevalence of Chagas disease vectors in Texas, USA,, Vector-Borne and Zoonotic Diseases, 9 (2009), 41. Google Scholar |
[27] |
C. Kribs Zaleta, Vector consumption and contact process saturation in sylvatic transmission of T. cruzi,, Mathematical Population Studies, 13 (2006), 132.
doi: 10.1080/08898480600788576. |
[28] |
C. Kribs Zaleta, Estimating contact process saturation in sylvatic transmission of Trypanosoma cruzi in the U.S.,, PLOS Neglected Tropical Diseases, 4 (2010), 1. Google Scholar |
[29] |
C. Kribs Zaleta, Alternative transmission modes for Trypanosoma cruzi,, Mathematical Bioscences and Engineering, 7 (2010), 657.
doi: 10.3934/mbe.2010.7.657. |
[30] |
R. C. Lambert, K. N. Kolivras, L. M. Resler, C. C. Brewster and S. L. Paulson, The potential for emergence of Chagas disease in the United States,, Geospatial Health, 2 (2008), 227. Google Scholar |
[31] |
M. J. Lehane, P. K. McEwen, C. J. Whitaker and C. J. Schofield, The role of temperature and nutritional status in flight initiation by Triatoma Infestans,, Acta Tropica, 52 (1992), 27. Google Scholar |
[32] |
M. Lewis, J. Renclawowicz and P. van den Driessche, Traveling waves and spread rates for a West Nile virus model,, Bulletin of Mathematical Biology, 68 (2006), 3.
doi: 10.1007/s11538-005-9018-z. |
[33] |
G. Macdonald, The Epidemiology and Control of Malaria,, Oxford: Oxford University Press, (1957). Google Scholar |
[34] |
N. A. Maidana and H. Mo Yang, Describing the geographic spread of dengue disease by traveling waves,, Mathematical Biosciences, 215 (2008), 64.
doi: 10.1016/j.mbs.2008.05.008. |
[35] |
K. McBee and R. J. Baker, Dasypus novemcinctus,, Mammalian Species, 162 (1982), 1.
doi: 10.2307/3503864. |
[36] |
R. Merkelz and S. F. Kerr, Demographics, den use, movements, and absence of Leishmania Mexicana in southern plains woodrats Neotoma micropus,, The Southwestern Naturalist, 47 (2002), 70. Google Scholar |
[37] |
J. Milei, R. A. Guerri-Guttenberg, D. Rodolfo Grana and R. Storino, Prognostic impact of Chagas disease in the United States,, American Heart Journal, 159 (2009), 22.
doi: 10.1016/j.ahj.2008.08.024. |
[38] |
E. Z. Moreno, I. M. Rivera, S. C. Moreno, M. E. Alarcón and A. Lugo-Yarbuh, Vertical transmission of Trypanosoma cruzi in Wistar rats during the acute phase of infection,, Investigación clínica (Maracaibo), 44 (2003). Google Scholar |
[39] |
J. D.Murray, E. A. Stanely and D. L. Brown, On the spatial spread of rabies among foxes,, Precedings of the Royal Society of London, 229 (1986), 111. Google Scholar |
[40] |
S. M. Pietzrak and O. J. Pung, Trypanosomiasis in raccoons from Georgia,, Journal of Wildlife Diseases, 34 (1998), 132. Google Scholar |
[41] |
W. F. Pippin, The biology and vector capability of Triatoma Sanguisuga Texana Usinger and Triatoma Gerstaeckeri (Stål)(Hemiptera: Triatominae),, Journal of Medical Entomology, 7 (1970), 30. Google Scholar |
[42] |
O. J. Pung, C. W. Banks, D. N. Jones and M. W. Krissinger, Trypanosoma cruzi in wild raccoons, opossums, and triatomine bugs in southeast Georgia, USA,, Journal of Parasitology, 81 (1995), 583. Google Scholar |
[43] |
G. G. Raun, A population of woodrats (Neotoma micropus) in southwest Texas,, Bull. Texas Mem. Mus., 11 (1966), 1. Google Scholar |
[44] |
R. W. Raymond, C. P. McHugh, L. R. Witt and S. F. Kerr, Temporal and spatial distribution of Leishmania mexicana infections in a population of Neotoma micropus,, Mem. Inst. Oswaldo Cruz., 98 (2003), 171. Google Scholar |
[45] |
D. M. Roellig, E. L. Brown, C. Barnabé, M. Tibayrenc, F. J. Steurer and M. J. Yabsley, Molecular typing of Trypanosoma cruzi isolates, United States,, Emerging Infectious Diseases, 14 (2008), 1123. Google Scholar |
[46] |
R. Ross, The Prevention of Malaria,, (2nd edition). London: Murray 1911., (1911). Google Scholar |
[47] |
S. Sarkar, S. E. Strutz, D. M. Frank, C. L. Rivaldi, B. Sissel and V. Sánchez-Cordero, Chagas disease risk in Texas,, PLoS Neglected Tropical Diseases, 4 (2010), 1.
doi: 10.1371/journal.pntd.0000836. |
[48] |
C. J. Schofield, M. J. Lehane, P. McEwen, S. S. Catala and D. E. Gorla, Dispersive flight by Triatoma Infestans under natural climatic conditions in Argentina,, Medical and Veterinary Entomology, 6 (1992), 51. Google Scholar |
[49] |
H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations,, Journal of Mathematical Biology, 30 (1992), 755.
doi: 10.1007/BF00173267. |
[50] |
H. R. Thieme, Asymptotically autonomous differential equations in the plane,, Rocky Mountain Journal of Mathematics, 24 (1994), 351.
doi: 10.1216/rmjm/1181072470. |
[51] |
K. M. Thies, M. L. Thies and W. Caire, House construction by the southern plains woodrat (Neotoma micropus) in southwestern Oklahoma,, The Southwestern Naturalist, 41 (1996), 116. Google Scholar |
[52] |
M. L. Thies and W. Caire, Nearest-neighbor analysis of the spatial distribution of houses Neotoma micropus in southwestern Oklahoma,, The Southwestern Naturalist, 36 (1991), 233. Google Scholar |
[53] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29.
doi: 10.1016/S0025-5564(02)00108-6. |
[54] |
J. X. Velasco-Hernández, An epidemiological model for the dynamics of Chagas' disease,, Biosystems, 26 (1991), 127.
doi: 10.1016/0303-2647(91)90043-K. |
[55] |
M. E. Villagrán, C. Marin, A. Hurtado, M. Sánchez-Moreno and J. Antonio de Diego, Natural infection and distribution of Triatomines (Hemiptera: Reduviidae) in the state of Querétaro, Mexico,, The Royal Society of Tropical Medicine and Hygiene, 102 (2008), 833. Google Scholar |
[56] |
J. Wade-Smith and B. J. Verts, Mephitis mephitis, Mammalian Species,, 173 (1982), 173 (1982), 1. Google Scholar |
[57] |
World Health Organization (2010), Chagas Disease: American Trypanosomiasis,, Retrieved from , (). Google Scholar |
[58] |
M. Yabsley and G. Pittman Noblet, Biological and molecular characterization of a raccoon isolate of Trypanosoma cruzi from South Carolina,, Journal of Parasitology, 88 (2002), 1273. Google Scholar |
[59] |
M. Yabsley, J. Barnes, A. Ellis, S. Kjos and C. Roxanne, Southern plains woodrats (Neotoma micropus) from southern Texas are important reservoirs of two genotypes of Trypanosoma cruzi and a host of a putative novel Trypanosoma species,, Vector-Borne and Zoonotic Diseases, 13 (2012), 1. Google Scholar |
[60] |
R. Zeledón, and J. E. Rabinovich, Chagas' Disease: An ecological appraisal with special emphasis on its insect vectors,, Annual Review of Entomology, 26 (1981), 101. Google Scholar |
[61] |
B. Zingales, S. G. Andrade, M. Briones, D. A. Campbell, E. Chiari, O. Fernandes, F. Guhl, E Lages-Silva, A. Macedo, C. R. Machado, M. A. Miles, A. J. Romanha, N. R. Sturm, M. Tibayrenc and A. G. Schijman, A new consensus for Trypanosoma cruzi intraspecific nomenclature: Second revision meeting recommends TcI to TcVI,, Mem. Inst. Oswaldo Cruz., 104 (2009), 1051. Google Scholar |
show all references
References:
[1] |
Y. Benoist, P. Foulon and F. Labourie, Flots d'Anosov a distributions stable et instable differentiables,, (French) [Anosov flows with stable and unstable differentiable distributions], 5 (1992), 33.
doi: 10.2307/2152750. |
[2] |
N. Añez and J. S. East, Studies on Trypanosoma rangeli Tejera 1920 II. Its effect on feeding behaviour of triatomine bugs,, Acta tropica, 41 (1984), 93. Google Scholar |
[3] |
L. J. Allen, C. L. Wesley, R. D. Owen, D. G. Goodin, D. Koch, C. B. Jonsson, Y. Chu, J. M. Hutchinson and R. L. Paige, A habitat-based model for the spread of hantavirus between reservoir and spillover species,, Journal of Theoretical Biology, 260 (2009), 510.
doi: 10.1016/j.jtbi.2009.07.009. |
[4] |
J. Arino, J. R. Davis, D. Hartley, R. Jordan, J. M. Miller and P. van den Driessche, A multi-species epidemic model with spatial dynamics,, Mathematical Medicine and Biology, 22 (2005), 129.
doi: 10.1093/imammb/dqi003. |
[5] |
C. B. Beard, G. Pye, F. J. Steurer, R. Rodriguiz, R. Campman, A. Townsend Peterson, J. Ramsey, R. A. Wirtz and L. E. Robinson, Chagas Disease in a domestic transmission cycle in southern Texas, USA,, Emerging Infectious Diseases, 9 (2003), 103.
doi: 10.3201/eid0901.020217. |
[6] |
C. Bern and S. P. Montgomery, An estimate of the burden of Chagas disease in the United States,, Clinical Infectious Diseases, 49 (2009), 52.
doi: 10.1086/605091. |
[7] |
T. W. Box, Density of plains wood rat dens on four plant communities in south Texas,, Ecology, 40 (1959), 715. Google Scholar |
[8] |
F. Brauer, C. Castillo-Chavez and J. X. Velasco-Hernández, Recruitment effects in heterosexually transmitted disease models,, International Journal of Applied Science and Computation, 3 (1996), 78. Google Scholar |
[9] |
J. K. Braun and M. A. Mares, Neotoma micropus,, Mammalian Species, 330 (1989), 1.
doi: 10.2307/3504233. |
[10] |
J. E. Burkholder, T. C. Allison and V. P. Kelly, Trypanosoma cruzi (Chagas) (Protozoa: Kinetoplastida) in invertebrate, reservoir, and human hosts of the Lower Rio Grande Valley of Texas,, Journal of Parasitology, 66 (1980), 305.
doi: 10.2307/3280824. |
[11] |
Centers for Disease Control and Prevention (2012), Chagas Disease,, Retrieved from , (). Google Scholar |
[12] |
A. Cherif, V. Garcia Horton, G. Melendez Rosario and W. Feliciano, A Tale of Two Regions: A Mathematical Model for Chagas' Disease,, MTBI Technical Report MTBI 05-05M. Arizona State University 2008., (2008), 05. Google Scholar |
[13] |
C. G. Clark and O. J. Pung, Host specificity of ribosomal DNA variation in sylvatic Trypanosoma cruzi from North America,, Molecular and Biochemical Parisitology, 66 (1994), 175. Google Scholar |
[14] |
S. A. Conditt and D. O. Ribble, Social organization of Neotoma micropus, the southern plains woodrat,, Am. Midl. Nat., 137 (1996), 290. Google Scholar |
[15] |
B. A. Crawford and C. M. Kribs-Zaleta, Vector migration and dispersal rate for sylvatic T. cruzi transmission,, Ecological Complexity, 14 (2013), 145. Google Scholar |
[16] |
S. I. Curto de Casas and R. U. Carcavallo, Climate change and vector-borne diseases distribution,, Social Science and Medicine, 40 (1995), 1437. Google Scholar |
[17] |
P. L. Dorn, C. Monroy and A. Curtis, Triatoma dimidiata (Latreille, 1811): A review of its diversity across its geographic range and the relationship among populations,, Infection, 7 (2007), 343. Google Scholar |
[18] |
R. B. Eads, H. A. Trevino and E. G. Campos, Triatoma (Hemiptera: Reduviidae) Infected with Trypanosoma Cruzi in south Texas wood rat dens,, The Southwestern Naturalist, 8 (1963), 38. Google Scholar |
[19] |
E. K. Fritzell and K. J. Haroldson, Urocyon cinereoargenteus,, Mammalian Species, 189 (1982), 1.
doi: 10.2307/3503957. |
[20] |
S. D. Gehrt and E. K. Fritzell, Duration of familial bonds and dispersal patterns for raccoons in south Texas,, J. Mammalogy, 79 (1998), 859.
doi: 10.2307/1383094. |
[21] |
S. Gourbiére, E. Dumonteil, J. E. Rabinovich, R. Minkoue and F. Menu, Demographic and dispersal constraints for domestic infestation by non-domicilated Chagas disease vectors in the Yucatan Peninsula, Mexico,, American Journal of Tropical Medicine and Hygiene, 78 (2008), 133. Google Scholar |
[22] |
J. M. Gurevitz, L. A. Ceballos, U. Kitron and R. E. Gürtler, Flight initiation of Triatoma Infestans (Hemiptera: Reduviidae) under natural climatic conditions,, Journal of Medical Entomology, 43 (2006), 143. Google Scholar |
[23] |
E. J. Hanford, F. B. Zhan, Y. Lu and A. Giordano, Chagas disease in Texas: Recognizing the significance and implications of evidence in the literature,, Social Science and Medicine, 65 (2007), 60.
doi: 10.1016/j.socscimed.2007.02.041. |
[24] |
M. Harry, F. Lema and C. A. Romaña, Chagas' disease challenge,, The Lancet, 355 (2000).
doi: 10.1016/S0140-6736(05)72114-0. |
[25] |
J. O. Ikenga and J. V. Richerson, Trypanosoma cruzi (Chagas) (Protozoa: Kinetoplastida: Trypanosomatidae) in invertebrate and vertebrate hosts from Brewster County in Trans-Pecos Texas,, Journal of Economic Entomology, 77 (1984), 126. Google Scholar |
[26] |
S. A. Kjos, K. F. Snowden and J. Olson, Biogeography and Trypanosoma cruzi infection prevalence of Chagas disease vectors in Texas, USA,, Vector-Borne and Zoonotic Diseases, 9 (2009), 41. Google Scholar |
[27] |
C. Kribs Zaleta, Vector consumption and contact process saturation in sylvatic transmission of T. cruzi,, Mathematical Population Studies, 13 (2006), 132.
doi: 10.1080/08898480600788576. |
[28] |
C. Kribs Zaleta, Estimating contact process saturation in sylvatic transmission of Trypanosoma cruzi in the U.S.,, PLOS Neglected Tropical Diseases, 4 (2010), 1. Google Scholar |
[29] |
C. Kribs Zaleta, Alternative transmission modes for Trypanosoma cruzi,, Mathematical Bioscences and Engineering, 7 (2010), 657.
doi: 10.3934/mbe.2010.7.657. |
[30] |
R. C. Lambert, K. N. Kolivras, L. M. Resler, C. C. Brewster and S. L. Paulson, The potential for emergence of Chagas disease in the United States,, Geospatial Health, 2 (2008), 227. Google Scholar |
[31] |
M. J. Lehane, P. K. McEwen, C. J. Whitaker and C. J. Schofield, The role of temperature and nutritional status in flight initiation by Triatoma Infestans,, Acta Tropica, 52 (1992), 27. Google Scholar |
[32] |
M. Lewis, J. Renclawowicz and P. van den Driessche, Traveling waves and spread rates for a West Nile virus model,, Bulletin of Mathematical Biology, 68 (2006), 3.
doi: 10.1007/s11538-005-9018-z. |
[33] |
G. Macdonald, The Epidemiology and Control of Malaria,, Oxford: Oxford University Press, (1957). Google Scholar |
[34] |
N. A. Maidana and H. Mo Yang, Describing the geographic spread of dengue disease by traveling waves,, Mathematical Biosciences, 215 (2008), 64.
doi: 10.1016/j.mbs.2008.05.008. |
[35] |
K. McBee and R. J. Baker, Dasypus novemcinctus,, Mammalian Species, 162 (1982), 1.
doi: 10.2307/3503864. |
[36] |
R. Merkelz and S. F. Kerr, Demographics, den use, movements, and absence of Leishmania Mexicana in southern plains woodrats Neotoma micropus,, The Southwestern Naturalist, 47 (2002), 70. Google Scholar |
[37] |
J. Milei, R. A. Guerri-Guttenberg, D. Rodolfo Grana and R. Storino, Prognostic impact of Chagas disease in the United States,, American Heart Journal, 159 (2009), 22.
doi: 10.1016/j.ahj.2008.08.024. |
[38] |
E. Z. Moreno, I. M. Rivera, S. C. Moreno, M. E. Alarcón and A. Lugo-Yarbuh, Vertical transmission of Trypanosoma cruzi in Wistar rats during the acute phase of infection,, Investigación clínica (Maracaibo), 44 (2003). Google Scholar |
[39] |
J. D.Murray, E. A. Stanely and D. L. Brown, On the spatial spread of rabies among foxes,, Precedings of the Royal Society of London, 229 (1986), 111. Google Scholar |
[40] |
S. M. Pietzrak and O. J. Pung, Trypanosomiasis in raccoons from Georgia,, Journal of Wildlife Diseases, 34 (1998), 132. Google Scholar |
[41] |
W. F. Pippin, The biology and vector capability of Triatoma Sanguisuga Texana Usinger and Triatoma Gerstaeckeri (Stål)(Hemiptera: Triatominae),, Journal of Medical Entomology, 7 (1970), 30. Google Scholar |
[42] |
O. J. Pung, C. W. Banks, D. N. Jones and M. W. Krissinger, Trypanosoma cruzi in wild raccoons, opossums, and triatomine bugs in southeast Georgia, USA,, Journal of Parasitology, 81 (1995), 583. Google Scholar |
[43] |
G. G. Raun, A population of woodrats (Neotoma micropus) in southwest Texas,, Bull. Texas Mem. Mus., 11 (1966), 1. Google Scholar |
[44] |
R. W. Raymond, C. P. McHugh, L. R. Witt and S. F. Kerr, Temporal and spatial distribution of Leishmania mexicana infections in a population of Neotoma micropus,, Mem. Inst. Oswaldo Cruz., 98 (2003), 171. Google Scholar |
[45] |
D. M. Roellig, E. L. Brown, C. Barnabé, M. Tibayrenc, F. J. Steurer and M. J. Yabsley, Molecular typing of Trypanosoma cruzi isolates, United States,, Emerging Infectious Diseases, 14 (2008), 1123. Google Scholar |
[46] |
R. Ross, The Prevention of Malaria,, (2nd edition). London: Murray 1911., (1911). Google Scholar |
[47] |
S. Sarkar, S. E. Strutz, D. M. Frank, C. L. Rivaldi, B. Sissel and V. Sánchez-Cordero, Chagas disease risk in Texas,, PLoS Neglected Tropical Diseases, 4 (2010), 1.
doi: 10.1371/journal.pntd.0000836. |
[48] |
C. J. Schofield, M. J. Lehane, P. McEwen, S. S. Catala and D. E. Gorla, Dispersive flight by Triatoma Infestans under natural climatic conditions in Argentina,, Medical and Veterinary Entomology, 6 (1992), 51. Google Scholar |
[49] |
H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations,, Journal of Mathematical Biology, 30 (1992), 755.
doi: 10.1007/BF00173267. |
[50] |
H. R. Thieme, Asymptotically autonomous differential equations in the plane,, Rocky Mountain Journal of Mathematics, 24 (1994), 351.
doi: 10.1216/rmjm/1181072470. |
[51] |
K. M. Thies, M. L. Thies and W. Caire, House construction by the southern plains woodrat (Neotoma micropus) in southwestern Oklahoma,, The Southwestern Naturalist, 41 (1996), 116. Google Scholar |
[52] |
M. L. Thies and W. Caire, Nearest-neighbor analysis of the spatial distribution of houses Neotoma micropus in southwestern Oklahoma,, The Southwestern Naturalist, 36 (1991), 233. Google Scholar |
[53] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29.
doi: 10.1016/S0025-5564(02)00108-6. |
[54] |
J. X. Velasco-Hernández, An epidemiological model for the dynamics of Chagas' disease,, Biosystems, 26 (1991), 127.
doi: 10.1016/0303-2647(91)90043-K. |
[55] |
M. E. Villagrán, C. Marin, A. Hurtado, M. Sánchez-Moreno and J. Antonio de Diego, Natural infection and distribution of Triatomines (Hemiptera: Reduviidae) in the state of Querétaro, Mexico,, The Royal Society of Tropical Medicine and Hygiene, 102 (2008), 833. Google Scholar |
[56] |
J. Wade-Smith and B. J. Verts, Mephitis mephitis, Mammalian Species,, 173 (1982), 173 (1982), 1. Google Scholar |
[57] |
World Health Organization (2010), Chagas Disease: American Trypanosomiasis,, Retrieved from , (). Google Scholar |
[58] |
M. Yabsley and G. Pittman Noblet, Biological and molecular characterization of a raccoon isolate of Trypanosoma cruzi from South Carolina,, Journal of Parasitology, 88 (2002), 1273. Google Scholar |
[59] |
M. Yabsley, J. Barnes, A. Ellis, S. Kjos and C. Roxanne, Southern plains woodrats (Neotoma micropus) from southern Texas are important reservoirs of two genotypes of Trypanosoma cruzi and a host of a putative novel Trypanosoma species,, Vector-Borne and Zoonotic Diseases, 13 (2012), 1. Google Scholar |
[60] |
R. Zeledón, and J. E. Rabinovich, Chagas' Disease: An ecological appraisal with special emphasis on its insect vectors,, Annual Review of Entomology, 26 (1981), 101. Google Scholar |
[61] |
B. Zingales, S. G. Andrade, M. Briones, D. A. Campbell, E. Chiari, O. Fernandes, F. Guhl, E Lages-Silva, A. Macedo, C. R. Machado, M. A. Miles, A. J. Romanha, N. R. Sturm, M. Tibayrenc and A. G. Schijman, A new consensus for Trypanosoma cruzi intraspecific nomenclature: Second revision meeting recommends TcI to TcVI,, Mem. Inst. Oswaldo Cruz., 104 (2009), 1051. Google Scholar |
[1] |
Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377 |
[2] |
Dashun Xu, Z. Feng. A metapopulation model with local competitions. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 495-510. doi: 10.3934/dcdsb.2009.12.495 |
[3] |
Tiago de Carvalho, Bruno Freitas. Birth of an arbitrary number of T-singularities in 3D piecewise smooth vector fields. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4851-4861. doi: 10.3934/dcdsb.2019034 |
[4] |
Ariel Cintrón-Arias, Carlos Castillo-Chávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks. The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences & Engineering, 2009, 6 (2) : 261-282. doi: 10.3934/mbe.2009.6.261 |
[5] |
Julien Dambrine, Nicolas Meunier, Bertrand Maury, Aude Roudneff-Chupin. A congestion model for cell migration. Communications on Pure & Applied Analysis, 2012, 11 (1) : 243-260. doi: 10.3934/cpaa.2012.11.243 |
[6] |
Erika Asano, Louis J. Gross, Suzanne Lenhart, Leslie A. Real. Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical Biosciences & Engineering, 2008, 5 (2) : 219-238. doi: 10.3934/mbe.2008.5.219 |
[7] |
Alan J. Terry. Pulse vaccination strategies in a metapopulation SIR model. Mathematical Biosciences & Engineering, 2010, 7 (2) : 455-477. doi: 10.3934/mbe.2010.7.455 |
[8] |
Zhilan Feng, Robert Swihart, Yingfei Yi, Huaiping Zhu. Coexistence in a metapopulation model with explicit local dynamics. Mathematical Biosciences & Engineering, 2004, 1 (1) : 131-145. doi: 10.3934/mbe.2004.1.131 |
[9] |
Mohammad A. Tabatabai, Wayne M. Eby, Karan P. Singh, Sejong Bae. T model of growth and its application in systems of tumor-immune dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 925-938. doi: 10.3934/mbe.2013.10.925 |
[10] |
H.T. Banks, S. Dediu, H.K. Nguyen. Sensitivity of dynamical systems to parameters in a convex subset of a topological vector space. Mathematical Biosciences & Engineering, 2007, 4 (3) : 403-430. doi: 10.3934/mbe.2007.4.403 |
[11] |
Nicolai T. A. Haydn, Kasia Wasilewska. Limiting distribution and error terms for the number of visits to balls in non-uniformly hyperbolic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2585-2611. doi: 10.3934/dcds.2016.36.2585 |
[12] |
Derdei Mahamat Bichara. Effects of migration on vector-borne diseases with forward and backward stage progression. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6297-6323. doi: 10.3934/dcdsb.2019140 |
[13] |
Suman Ganguli, David Gammack, Denise E. Kirschner. A Metapopulation Model Of Granuloma Formation In The Lung During Infection With Mycobacterium Tuberculosis. Mathematical Biosciences & Engineering, 2005, 2 (3) : 535-560. doi: 10.3934/mbe.2005.2.535 |
[14] |
Leonid A. Bunimovich. Dynamical systems and operations research: A basic model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 209-218. doi: 10.3934/dcdsb.2001.1.209 |
[15] |
Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239 |
[16] |
Yangjin Kim, Soyeon Roh. A hybrid model for cell proliferation and migration in glioblastoma. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 969-1015. doi: 10.3934/dcdsb.2013.18.969 |
[17] |
Harald Fripertinger. The number of invariant subspaces under a linear operator on finite vector spaces. Advances in Mathematics of Communications, 2011, 5 (2) : 407-416. doi: 10.3934/amc.2011.5.407 |
[18] |
Houssein Ayoub, Bedreddine Ainseba, Michel Langlais, Rodolphe Thiébaut. Parameters identification for a model of T cell homeostasis. Mathematical Biosciences & Engineering, 2015, 12 (5) : 917-936. doi: 10.3934/mbe.2015.12.917 |
[19] |
Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105 |
[20] |
Marco Scianna, Luigi Preziosi, Katarina Wolf. A Cellular Potts model simulating cell migration on and in matrix environments. Mathematical Biosciences & Engineering, 2013, 10 (1) : 235-261. doi: 10.3934/mbe.2013.10.235 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]