\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation

Abstract Related Papers Cited by
  • Because every spike of a neuron is determined by input signals, a train of spikes may contain information about the dynamics of unobserved neurons. A state-space method based on the leaky integrate-and-fire model, describing neuronal transformation from input signals to a spike train has been proposed for tracking input parameters represented by their mean and fluctuation [11]. In the present paper, we propose to make the estimation more realistic by adopting an LIF model augmented with an adaptive moving threshold. Moreover, because the direct state-space method is computationally infeasible for a data set comprising thousands of spikes, we further develop a practical method for transforming instantaneous firing characteristics back to input parameters. The instantaneous firing characteristics, represented by the firing rate and non-Poisson irregularity, can be estimated using a computationally feasible algorithm. We applied our proposed methods to synthetic data to clarify that they perform well.
    Mathematics Subject Classification: Primary: 60H30, 62P10; Secondary: 65C30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    O. Avila-Akerberg and M. J. Chacron, Nonrenewal spike train statistics: Causes and functional consequences on neural coding, Exp. Brain Res., 210 (2011), 353-371.

    [2]

    J. Benda, L. Maler and A. Longtin, Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds, J. Neurophysiol., 104 (2010), 2806-2820.doi: 10.1152/jn.00240.2010.

    [3]

    A. Buonocore, A. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of first-passage-time probability densities, Adv. Appl. Probab., 19 (1987), 784-800.doi: 10.2307/1427102.

    [4]

    D. R. Cox and P. A. W. Lewis, "The Statistical Analysis of Series of Events," Methuen & Co., Ltd., London; John Wiley & Sons, Inc., New York, 1966.

    [5]

    S. Ditlevsen and P. Lansky, Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model, Phys. Rev. E, 71 (2005), 011907, 9 pp.doi: 10.1103/PhysRevE.71.011907.

    [6]

    F. Farkhooi, M. F. Strube-Bloss and M. P. Nawrot, Serial correlation in neural spike trains: Experimental evidence, stochastic modeling, and single neuron variability, Phys. Rev. E, 79 (2009), 021905.doi: 10.1103/PhysRevE.79.021905.

    [7]

    M. J. Higley and D. Contreras, Balanced excitation and inhibition determine spike timing during frequency adaptation, J. Neurosci., 26 (2006), 448-457.doi: 10.1523/JNEUROSCI.3506-05.2006.

    [8]

    J. Inoue, S. Sato and L. M. Ricciardi, On the parameter estimation for diffusion models of single neuron's activities, Biol. Cybern., 73 (1995), 209-221.doi: 10.1007/BF00201423.

    [9]

    S. Iyengar and Q. Liao, Modeling neural activity using the generalized inverse Gaussian distribution, Biol. Cybern., 77 (1997), 289-295.doi: 10.1007/s004220050390.

    [10]

    J. Keilson and H. F. Ross, Passage time distributions for Gaussian Markov (Ornstein-Uhlenbeck) statistical processes, in "Selected tables in mathematical statistics, Vol. III," Amer. Math. Soc., Providence, RI, (1975), 233-327.

    [11]

    H. Kim and S. Shinomoto, Estimating nonstationary input signals from a single neuronal spike train, Phys. Rev. E, 86 (2012), 051903.doi: 10.1103/PhysRevE.86.051903.

    [12]

    P. Lánský and V. Lánská, Diffusion approximation of the neuronal model with synaptic reversal potentials, Biol. Cybern., 56 (1987), 19-26.doi: 10.1007/BF00333064.

    [13]

    P. Lánský and S. Ditlevsen, A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models, Biol. Cybern., 99 (2008), 253-262.doi: 10.1007/s00422-008-0237-x.

    [14]

    N. N. Lebedev, "Special Functions and Their Applications," Revised edition, Dover Publications, Inc., New York, 1972.

    [15]

    B. Lindner and A. Longtin, Effect of an exponentially decaying threshold on the firing statistics of a stochastic integrate-and-fire neuron, J. Theor. Biol., 232 (2005), 505-521.doi: 10.1016/j.jtbi.2004.08.030.

    [16]

    Y.-H. Liu and X.-J. Wang, Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron, J. Comput. Neurosci., 10 (2001), 25-45.

    [17]

    A. Mason and A. Larkman, Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology, J. Neurosci., 10 (1990), 1415-1428.

    [18]

    A. Mason, A. Nicoll and K. Stratford, Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro, J. Neurosci., 11 (1991), 72-84.

    [19]

    D. A. McCormick, B. W. Connors, J. W. Lighthall and D. A. Prince, Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex, J. Neurophysiol., 54 (1985), 782-806.

    [20]

    P. Mullowney and S. Iyengar, Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data, J. Comput. Neurosci., 24 (2008), 179-194.doi: 10.1007/s10827-007-0047-5.

    [21]

    M. P. Nawrot, C. Boucsein, V. Rodriguez-Molina, A. Aertsen, S. Grün and S. Rotter, Serial interval statistics of spontaneous activity in cortical neurons in vivo and in vitro, Neurocomput., 70 (2007), 1717-1722.doi: 10.1016/j.neucom.2006.10.101.

    [22]

    L. Paninski, J. W. Pillow and E. P. Simoncelli, Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model, Neural Comput., 16 (2004), 2533-2561.doi: 10.1162/0899766042321797.

    [23]

    L. Paninski, A. Haith and G. Szirtes, Integral equation methods for computing likelihoods and their derivatives in the stochastic integrate-and-fire model, J. Comput. Neurosci., 24 (2008), 69-79.doi: 10.1007/s10827-007-0042-x.

    [24]

    W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes in C: The Art of Scientific Computing," $2^{nd}$ edition, Cambridge University Press, Cambridge, 1992.

    [25]

    L. M. Ricciardi and S. Sato, First-passage-time density and moments of the Ornstein-Uhlenbeck process, J. Appl. Prob., 25 (1988), 43-57.doi: 10.2307/3214232.

    [26]

    Y. Sakai, S. Funahashi and S. Shinomoto, Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons, Neural Netw., 12 (1999), 1181-1190.doi: 10.1016/S0893-6080(99)00053-2.

    [27]

    T. Shimokawa and S. Shinomoto, Estimating instantaneous irregularity of neuronal firing, Neural Comput., 21 (2009), 1931-1951.doi: 10.1162/neco.2009.08-08-841.

    [28]

    S. Shinomoto, Y. Sakai and S. Funahashi, The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex, Neural Comput., 11 (1999), 935-951.doi: 10.1162/089976699300016511.

    [29]

    A. Smith and E. Brown, Estimating a state-space model from point process observations, Neural Comput., 15 (2003), 965-991.doi: 10.1162/089976603765202622.

    [30]

    W. R. Softky and C. Koch, The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs, J. Neurosci., 13 (1993), 334-350.

    [31]

    Y. Shu, A. Hasenstaub and D. A. McCormick, Turning on and off recurrent balanced cortical activity, Nature, 423 (2003), 288-293.doi: 10.1038/nature01616.

    [32]

    C. F. Stevens and A. M. Zador, Input synchrony and the irregular firing of cortical neurons, Nat. Neurosci., 1 (1998), 210-217.doi: 10.1038/659.

    [33]

    T. W. Troyer and K. D. Miller, Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell, Neural Comput., 9 (1997), 971-983.doi: 10.1162/neco.1997.9.5.971.

    [34]

    H. C. Tuckwell, "Introduction to Theoretical Neurobiology," Cambridge Studies in Mathematical Biology, No. 8, Cambridge University Press, Cambridge, 1988.doi: 10.1017/CBO9780511623271.

    [35]

    R. D. Vilela and B. Lindner, Are the input parameters of white noise driven integrate and fire neurons uniquely determined by rate and CV?, J. Theor. Biol., 257 (2009), 90-99.doi: 10.1016/j.jtbi.2008.11.004.

    [36]

    M. Wehr and A. M. Zador, Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex, Nature, 426 (2003), 442-446.doi: 10.1038/nature02116.

    [37]

    X. Zhang, G. You, T. Chen and J. Feng, Maximum likelihood decoding of neuronal inputs from an interspike interval distribution, Neural Comput., 21 (2009), 3079-3105.doi: 10.1162/neco.2009.06-08-807.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(42) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return