2014, 11(1): 49-62. doi: 10.3934/mbe.2014.11.49

Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation

1. 

NTT Service Evolution Laboratories, NTT Corporation, Yokosuka-shi, Kanagawa, 239-0847, Japan

2. 

Department of Physics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

Received  December 2012 Revised  June 2013 Published  September 2013

Because every spike of a neuron is determined by input signals, a train of spikes may contain information about the dynamics of unobserved neurons. A state-space method based on the leaky integrate-and-fire model, describing neuronal transformation from input signals to a spike train has been proposed for tracking input parameters represented by their mean and fluctuation [11]. In the present paper, we propose to make the estimation more realistic by adopting an LIF model augmented with an adaptive moving threshold. Moreover, because the direct state-space method is computationally infeasible for a data set comprising thousands of spikes, we further develop a practical method for transforming instantaneous firing characteristics back to input parameters. The instantaneous firing characteristics, represented by the firing rate and non-Poisson irregularity, can be estimated using a computationally feasible algorithm. We applied our proposed methods to synthetic data to clarify that they perform well.
Citation: Hideaki Kim, Shigeru Shinomoto. Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation. Mathematical Biosciences & Engineering, 2014, 11 (1) : 49-62. doi: 10.3934/mbe.2014.11.49
References:
[1]

O. Avila-Akerberg and M. J. Chacron, Nonrenewal spike train statistics: Causes and functional consequences on neural coding,, Exp. Brain Res., 210 (2011), 353. Google Scholar

[2]

J. Benda, L. Maler and A. Longtin, Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds,, J. Neurophysiol., 104 (2010), 2806. doi: 10.1152/jn.00240.2010. Google Scholar

[3]

A. Buonocore, A. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of first-passage-time probability densities,, Adv. Appl. Probab., 19 (1987), 784. doi: 10.2307/1427102. Google Scholar

[4]

D. R. Cox and P. A. W. Lewis, "The Statistical Analysis of Series of Events,", Methuen & Co., (1966). Google Scholar

[5]

S. Ditlevsen and P. Lansky, Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model,, Phys. Rev. E, 71 (2005). doi: 10.1103/PhysRevE.71.011907. Google Scholar

[6]

F. Farkhooi, M. F. Strube-Bloss and M. P. Nawrot, Serial correlation in neural spike trains: Experimental evidence, stochastic modeling, and single neuron variability,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.021905. Google Scholar

[7]

M. J. Higley and D. Contreras, Balanced excitation and inhibition determine spike timing during frequency adaptation,, J. Neurosci., 26 (2006), 448. doi: 10.1523/JNEUROSCI.3506-05.2006. Google Scholar

[8]

J. Inoue, S. Sato and L. M. Ricciardi, On the parameter estimation for diffusion models of single neuron's activities,, Biol. Cybern., 73 (1995), 209. doi: 10.1007/BF00201423. Google Scholar

[9]

S. Iyengar and Q. Liao, Modeling neural activity using the generalized inverse Gaussian distribution,, Biol. Cybern., 77 (1997), 289. doi: 10.1007/s004220050390. Google Scholar

[10]

J. Keilson and H. F. Ross, Passage time distributions for Gaussian Markov (Ornstein-Uhlenbeck) statistical processes,, in, (1975), 233. Google Scholar

[11]

H. Kim and S. Shinomoto, Estimating nonstationary input signals from a single neuronal spike train,, Phys. Rev. E, 86 (2012). doi: 10.1103/PhysRevE.86.051903. Google Scholar

[12]

P. Lánský and V. Lánská, Diffusion approximation of the neuronal model with synaptic reversal potentials,, Biol. Cybern., 56 (1987), 19. doi: 10.1007/BF00333064. Google Scholar

[13]

P. Lánský and S. Ditlevsen, A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models,, Biol. Cybern., 99 (2008), 253. doi: 10.1007/s00422-008-0237-x. Google Scholar

[14]

N. N. Lebedev, "Special Functions and Their Applications,", Revised edition, (1972). Google Scholar

[15]

B. Lindner and A. Longtin, Effect of an exponentially decaying threshold on the firing statistics of a stochastic integrate-and-fire neuron,, J. Theor. Biol., 232 (2005), 505. doi: 10.1016/j.jtbi.2004.08.030. Google Scholar

[16]

Y.-H. Liu and X.-J. Wang, Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron,, J. Comput. Neurosci., 10 (2001), 25. Google Scholar

[17]

A. Mason and A. Larkman, Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology,, J. Neurosci., 10 (1990), 1415. Google Scholar

[18]

A. Mason, A. Nicoll and K. Stratford, Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro,, J. Neurosci., 11 (1991), 72. Google Scholar

[19]

D. A. McCormick, B. W. Connors, J. W. Lighthall and D. A. Prince, Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex,, J. Neurophysiol., 54 (1985), 782. Google Scholar

[20]

P. Mullowney and S. Iyengar, Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data,, J. Comput. Neurosci., 24 (2008), 179. doi: 10.1007/s10827-007-0047-5. Google Scholar

[21]

M. P. Nawrot, C. Boucsein, V. Rodriguez-Molina, A. Aertsen, S. Grün and S. Rotter, Serial interval statistics of spontaneous activity in cortical neurons in vivo and in vitro,, Neurocomput., 70 (2007), 1717. doi: 10.1016/j.neucom.2006.10.101. Google Scholar

[22]

L. Paninski, J. W. Pillow and E. P. Simoncelli, Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model,, Neural Comput., 16 (2004), 2533. doi: 10.1162/0899766042321797. Google Scholar

[23]

L. Paninski, A. Haith and G. Szirtes, Integral equation methods for computing likelihoods and their derivatives in the stochastic integrate-and-fire model,, J. Comput. Neurosci., 24 (2008), 69. doi: 10.1007/s10827-007-0042-x. Google Scholar

[24]

W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes in C: The Art of Scientific Computing,", $2^{nd}$ edition, (1992). Google Scholar

[25]

L. M. Ricciardi and S. Sato, First-passage-time density and moments of the Ornstein-Uhlenbeck process,, J. Appl. Prob., 25 (1988), 43. doi: 10.2307/3214232. Google Scholar

[26]

Y. Sakai, S. Funahashi and S. Shinomoto, Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons,, Neural Netw., 12 (1999), 1181. doi: 10.1016/S0893-6080(99)00053-2. Google Scholar

[27]

T. Shimokawa and S. Shinomoto, Estimating instantaneous irregularity of neuronal firing,, Neural Comput., 21 (2009), 1931. doi: 10.1162/neco.2009.08-08-841. Google Scholar

[28]

S. Shinomoto, Y. Sakai and S. Funahashi, The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex,, Neural Comput., 11 (1999), 935. doi: 10.1162/089976699300016511. Google Scholar

[29]

A. Smith and E. Brown, Estimating a state-space model from point process observations,, Neural Comput., 15 (2003), 965. doi: 10.1162/089976603765202622. Google Scholar

[30]

W. R. Softky and C. Koch, The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs,, J. Neurosci., 13 (1993), 334. Google Scholar

[31]

Y. Shu, A. Hasenstaub and D. A. McCormick, Turning on and off recurrent balanced cortical activity,, Nature, 423 (2003), 288. doi: 10.1038/nature01616. Google Scholar

[32]

C. F. Stevens and A. M. Zador, Input synchrony and the irregular firing of cortical neurons,, Nat. Neurosci., 1 (1998), 210. doi: 10.1038/659. Google Scholar

[33]

T. W. Troyer and K. D. Miller, Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell,, Neural Comput., 9 (1997), 971. doi: 10.1162/neco.1997.9.5.971. Google Scholar

[34]

H. C. Tuckwell, "Introduction to Theoretical Neurobiology,", Cambridge Studies in Mathematical Biology, (1988). doi: 10.1017/CBO9780511623271. Google Scholar

[35]

R. D. Vilela and B. Lindner, Are the input parameters of white noise driven integrate and fire neurons uniquely determined by rate and CV?,, J. Theor. Biol., 257 (2009), 90. doi: 10.1016/j.jtbi.2008.11.004. Google Scholar

[36]

M. Wehr and A. M. Zador, Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex,, Nature, 426 (2003), 442. doi: 10.1038/nature02116. Google Scholar

[37]

X. Zhang, G. You, T. Chen and J. Feng, Maximum likelihood decoding of neuronal inputs from an interspike interval distribution,, Neural Comput., 21 (2009), 3079. doi: 10.1162/neco.2009.06-08-807. Google Scholar

show all references

References:
[1]

O. Avila-Akerberg and M. J. Chacron, Nonrenewal spike train statistics: Causes and functional consequences on neural coding,, Exp. Brain Res., 210 (2011), 353. Google Scholar

[2]

J. Benda, L. Maler and A. Longtin, Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds,, J. Neurophysiol., 104 (2010), 2806. doi: 10.1152/jn.00240.2010. Google Scholar

[3]

A. Buonocore, A. G. Nobile and L. M. Ricciardi, A new integral equation for the evaluation of first-passage-time probability densities,, Adv. Appl. Probab., 19 (1987), 784. doi: 10.2307/1427102. Google Scholar

[4]

D. R. Cox and P. A. W. Lewis, "The Statistical Analysis of Series of Events,", Methuen & Co., (1966). Google Scholar

[5]

S. Ditlevsen and P. Lansky, Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model,, Phys. Rev. E, 71 (2005). doi: 10.1103/PhysRevE.71.011907. Google Scholar

[6]

F. Farkhooi, M. F. Strube-Bloss and M. P. Nawrot, Serial correlation in neural spike trains: Experimental evidence, stochastic modeling, and single neuron variability,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.021905. Google Scholar

[7]

M. J. Higley and D. Contreras, Balanced excitation and inhibition determine spike timing during frequency adaptation,, J. Neurosci., 26 (2006), 448. doi: 10.1523/JNEUROSCI.3506-05.2006. Google Scholar

[8]

J. Inoue, S. Sato and L. M. Ricciardi, On the parameter estimation for diffusion models of single neuron's activities,, Biol. Cybern., 73 (1995), 209. doi: 10.1007/BF00201423. Google Scholar

[9]

S. Iyengar and Q. Liao, Modeling neural activity using the generalized inverse Gaussian distribution,, Biol. Cybern., 77 (1997), 289. doi: 10.1007/s004220050390. Google Scholar

[10]

J. Keilson and H. F. Ross, Passage time distributions for Gaussian Markov (Ornstein-Uhlenbeck) statistical processes,, in, (1975), 233. Google Scholar

[11]

H. Kim and S. Shinomoto, Estimating nonstationary input signals from a single neuronal spike train,, Phys. Rev. E, 86 (2012). doi: 10.1103/PhysRevE.86.051903. Google Scholar

[12]

P. Lánský and V. Lánská, Diffusion approximation of the neuronal model with synaptic reversal potentials,, Biol. Cybern., 56 (1987), 19. doi: 10.1007/BF00333064. Google Scholar

[13]

P. Lánský and S. Ditlevsen, A review of the methods for signal estimation in stochastic diffusion leaky integrate-and-fire neuronal models,, Biol. Cybern., 99 (2008), 253. doi: 10.1007/s00422-008-0237-x. Google Scholar

[14]

N. N. Lebedev, "Special Functions and Their Applications,", Revised edition, (1972). Google Scholar

[15]

B. Lindner and A. Longtin, Effect of an exponentially decaying threshold on the firing statistics of a stochastic integrate-and-fire neuron,, J. Theor. Biol., 232 (2005), 505. doi: 10.1016/j.jtbi.2004.08.030. Google Scholar

[16]

Y.-H. Liu and X.-J. Wang, Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron,, J. Comput. Neurosci., 10 (2001), 25. Google Scholar

[17]

A. Mason and A. Larkman, Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology,, J. Neurosci., 10 (1990), 1415. Google Scholar

[18]

A. Mason, A. Nicoll and K. Stratford, Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro,, J. Neurosci., 11 (1991), 72. Google Scholar

[19]

D. A. McCormick, B. W. Connors, J. W. Lighthall and D. A. Prince, Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex,, J. Neurophysiol., 54 (1985), 782. Google Scholar

[20]

P. Mullowney and S. Iyengar, Parameter estimation for a leaky integrate-and-fire neuronal model from ISI data,, J. Comput. Neurosci., 24 (2008), 179. doi: 10.1007/s10827-007-0047-5. Google Scholar

[21]

M. P. Nawrot, C. Boucsein, V. Rodriguez-Molina, A. Aertsen, S. Grün and S. Rotter, Serial interval statistics of spontaneous activity in cortical neurons in vivo and in vitro,, Neurocomput., 70 (2007), 1717. doi: 10.1016/j.neucom.2006.10.101. Google Scholar

[22]

L. Paninski, J. W. Pillow and E. P. Simoncelli, Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model,, Neural Comput., 16 (2004), 2533. doi: 10.1162/0899766042321797. Google Scholar

[23]

L. Paninski, A. Haith and G. Szirtes, Integral equation methods for computing likelihoods and their derivatives in the stochastic integrate-and-fire model,, J. Comput. Neurosci., 24 (2008), 69. doi: 10.1007/s10827-007-0042-x. Google Scholar

[24]

W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes in C: The Art of Scientific Computing,", $2^{nd}$ edition, (1992). Google Scholar

[25]

L. M. Ricciardi and S. Sato, First-passage-time density and moments of the Ornstein-Uhlenbeck process,, J. Appl. Prob., 25 (1988), 43. doi: 10.2307/3214232. Google Scholar

[26]

Y. Sakai, S. Funahashi and S. Shinomoto, Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons,, Neural Netw., 12 (1999), 1181. doi: 10.1016/S0893-6080(99)00053-2. Google Scholar

[27]

T. Shimokawa and S. Shinomoto, Estimating instantaneous irregularity of neuronal firing,, Neural Comput., 21 (2009), 1931. doi: 10.1162/neco.2009.08-08-841. Google Scholar

[28]

S. Shinomoto, Y. Sakai and S. Funahashi, The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex,, Neural Comput., 11 (1999), 935. doi: 10.1162/089976699300016511. Google Scholar

[29]

A. Smith and E. Brown, Estimating a state-space model from point process observations,, Neural Comput., 15 (2003), 965. doi: 10.1162/089976603765202622. Google Scholar

[30]

W. R. Softky and C. Koch, The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs,, J. Neurosci., 13 (1993), 334. Google Scholar

[31]

Y. Shu, A. Hasenstaub and D. A. McCormick, Turning on and off recurrent balanced cortical activity,, Nature, 423 (2003), 288. doi: 10.1038/nature01616. Google Scholar

[32]

C. F. Stevens and A. M. Zador, Input synchrony and the irregular firing of cortical neurons,, Nat. Neurosci., 1 (1998), 210. doi: 10.1038/659. Google Scholar

[33]

T. W. Troyer and K. D. Miller, Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell,, Neural Comput., 9 (1997), 971. doi: 10.1162/neco.1997.9.5.971. Google Scholar

[34]

H. C. Tuckwell, "Introduction to Theoretical Neurobiology,", Cambridge Studies in Mathematical Biology, (1988). doi: 10.1017/CBO9780511623271. Google Scholar

[35]

R. D. Vilela and B. Lindner, Are the input parameters of white noise driven integrate and fire neurons uniquely determined by rate and CV?,, J. Theor. Biol., 257 (2009), 90. doi: 10.1016/j.jtbi.2008.11.004. Google Scholar

[36]

M. Wehr and A. M. Zador, Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex,, Nature, 426 (2003), 442. doi: 10.1038/nature02116. Google Scholar

[37]

X. Zhang, G. You, T. Chen and J. Feng, Maximum likelihood decoding of neuronal inputs from an interspike interval distribution,, Neural Comput., 21 (2009), 3079. doi: 10.1162/neco.2009.06-08-807. Google Scholar

[1]

Giuseppe D'Onofrio, Enrica Pirozzi. Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences & Engineering, 2016, 13 (3) : 495-507. doi: 10.3934/mbe.2016003

[2]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. A leaky integrate-and-fire model with adaptation for the generation of a spike train. Mathematical Biosciences & Engineering, 2016, 13 (3) : 483-493. doi: 10.3934/mbe.2016002

[3]

Qiuying Li, Lifang Huang, Jianshe Yu. Modulation of first-passage time for bursty gene expression via random signals. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1261-1277. doi: 10.3934/mbe.2017065

[4]

Liqiang Zhu, Ying-Cheng Lai, Frank C. Hoppensteadt, Jiping He. Characterization of Neural Interaction During Learning and Adaptation from Spike-Train Data. Mathematical Biosciences & Engineering, 2005, 2 (1) : 1-23. doi: 10.3934/mbe.2005.2.1

[5]

Aldana M. González Montoro, Ricardo Cao, Christel Faes, Geert Molenberghs, Nelson Espinosa, Javier Cudeiro, Jorge Mariño. Cross nearest-spike interval based method to measure synchrony dynamics. Mathematical Biosciences & Engineering, 2014, 11 (1) : 27-48. doi: 10.3934/mbe.2014.11.27

[6]

Siu-Long Lei. Adaptive method for spike solutions of Gierer-Meinhardt system on irregular domain. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 651-668. doi: 10.3934/dcdsb.2011.15.651

[7]

John R. Tucker. Attractors and kernels: Linking nonlinear PDE semigroups to harmonic analysis state-space decomposition. Conference Publications, 2001, 2001 (Special) : 366-370. doi: 10.3934/proc.2001.2001.366

[8]

Massimiliano Tamborrino. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences & Engineering, 2016, 13 (3) : 613-629. doi: 10.3934/mbe.2016011

[9]

Daniela Calvetti, Jenni Heino, Erkki Somersalo, Knarik Tunyan. Bayesian stationary state flux balance analysis for a skeletal muscle metabolic model. Inverse Problems & Imaging, 2007, 1 (2) : 247-263. doi: 10.3934/ipi.2007.1.247

[10]

Nabil T. Fadai, Michael J. Ward, Juncheng Wei. A time-delay in the activator kinetics enhances the stability of a spike solution to the gierer-meinhardt model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1431-1458. doi: 10.3934/dcdsb.2018158

[11]

Antonio Di Crescenzo, Maria Longobardi, Barbara Martinucci. On a spike train probability model with interacting neural units. Mathematical Biosciences & Engineering, 2014, 11 (2) : 217-231. doi: 10.3934/mbe.2014.11.217

[12]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

[13]

Theodore Kolokolnikov, Michael J. Ward. Bifurcation of spike equilibria in the near-shadow Gierer-Meinhardt model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1033-1064. doi: 10.3934/dcdsb.2004.4.1033

[14]

Kazuhiro Kurata, Kotaro Morimoto. Existence of multiple spike stationary patterns in a chemotaxis model with weak saturation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 139-164. doi: 10.3934/dcds.2011.31.139

[15]

Yves Bourgault, Damien Broizat, Pierre-Emmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic & Related Models, 2015, 8 (1) : 1-27. doi: 10.3934/krm.2015.8.1

[16]

Michael V. Klibanov, Dinh-Liem Nguyen, Loc H. Nguyen, Hui Liu. A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data. Inverse Problems & Imaging, 2018, 12 (2) : 493-523. doi: 10.3934/ipi.2018021

[17]

Matthew O. Williams, Clarence W. Rowley, Ioannis G. Kevrekidis. A kernel-based method for data-driven koopman spectral analysis. Journal of Computational Dynamics, 2015, 2 (2) : 247-265. doi: 10.3934/jcd.2015005

[18]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[19]

Andrea Malchiodi. Construction of multidimensional spike-layers. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 187-202. doi: 10.3934/dcds.2006.14.187

[20]

Shinsuke Koyama, Ryota Kobayashi. Fluctuation scaling in neural spike trains. Mathematical Biosciences & Engineering, 2016, 13 (3) : 537-550. doi: 10.3934/mbe.2016006

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]