Citation: |
[1] |
J. R. Andrews and S. Basu, Transmission dynamics and control of cholera in Haiti: An epidemic model, Lancet, 377 (2011), 1248-1255.doi: 10.1016/S0140-6736(11)60273-0. |
[2] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and computation of the basic reproduction ratio $R_0$ in models for infections diseases in hetereogeneous populations, J. Math. Biol., 28 (1998), 365-382.doi: 10.1007/BF00178324. |
[3] |
O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infections Disease: Model Building, Analysis and Interpretation, Wiley, New York, 2000. |
[4] |
Z. L. Feng, W. Z. Huang and C. Castillo-Chavez, Global behavior of a multi-group SIS epidemic model with age structure, J. Diff. Equs., 218 (2005), 292-324.doi: 10.1016/j.jde.2004.10.009. |
[5] |
H. I. Freedman and J. W. H. So, Global stability and persistence of simple food chains, Math. Biosci., 76 (1985), 69-86.doi: 10.1016/0025-5564(85)90047-1. |
[6] |
B. S. Goh, Global stability in many-species systems, Amer. Natur., 111 (1977), 135-143.doi: 10.1086/283144. |
[7] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, American Mathematical Society, Providence, RI, 1988. |
[8] |
J. K. Hale and P. Waltman, Persistence in infinite dimensional systems, SIAM J. Math. Anal., 20 (1989), 388-395.doi: 10.1137/0520025. |
[9] |
J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems: Mathematical Aspects of Selection, Cambridge University Press, Cambridge, 1988. |
[10] |
G. Huang, X. N. Liu and Y. Takeuchi, Lyapunov function and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72 (2012), 25-38.doi: 10.1137/110826588. |
[11] |
M. Iannelli, Mathematical Theory of Age-structured Population Dynamics, Applied Mathematics Monographs 7, comitato nazionale per le scienze matematiche, Consiglio Nazionale delle Ricerche (C. N. R), Giardini, Pisa, 1995. |
[12] |
H. Inaba, A semigroup approach to the strong ergodic theorem of the multistate stable population process, Math. Popul. Studi., 17 (1988), 47-77.doi: 10.1080/08898488809525260. |
[13] |
A. L. Lloyd, Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods, Proc. Roy. Soc. Lond. B, 268 (2001), 985-993.doi: 10.1098/rspb.2001.1599. |
[14] |
A. L. Lloyd, Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics, Theor. Popul. Biol., 60 (2001), 59-71.doi: 10.1006/tpbi.2001.1525. |
[15] |
P. Magal, Compact attractors for time periodic age-structured population models, Electron. J. Diff. Equs., 65 (2001), 1-35. |
[16] |
P. Magal and H. R. Thieme, Eventual compactness for a semiflow generated by an age-structured models, Communications on Pure and Applied Analysis, 3 (2004), 695-727.doi: 10.3934/cpaa.2004.3.695. |
[17] |
P. Magal and X. Q. Zhao, Global attracotor in uniformly persistence dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.doi: 10.1137/S0036141003439173. |
[18] |
E. D'Agata, P. Magal, S. Ruan and G. F. Webb, Asymptotical behavior in nosocomial epidemic model with antibiotic resistance, Diff. Integr. Equs., 19 (2006), 573-600. |
[19] |
P. Magal, C. C. McCluskey and G. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109-1140.doi: 10.1080/00036810903208122. |
[20] |
P. Magal and C. McCluskey, Two group infection age model: an application to nosocomial infection, SIAM J. Appl. Math., 73 (2013), 1058-1095.doi: 10.1137/120882056. |
[21] |
F. A. Milner and A. Pugliese, Periodic solutions: a robust numerical method for an SIR model of epidemics, J. Math. Biol., 39 (1999), 471-492.doi: 10.1007/s002850050175. |
[22] |
Z. S. Shuai and P. Van den Driessche, Global dynamics of cholera models with differential infectivity, Math. Biosci., 234 (2011), 118-126.doi: 10.1016/j.mbs.2011.09.003. |
[23] |
Z. S. Shuai, J. H. Tien and P. van den Driessche, Cholera models with hyperinfectivity and temporary immunity, Bull. Math. Biol., 74 (2010), 2423-2445.doi: 10.1007/s11538-012-9759-4. |
[24] |
H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Diff. Integr. Equs., 3 (1990), 1035-1066. |
[25] |
H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics if HIV/AIDs? SIAM J. Appl. Math., 53 (1993), 1447-1479.doi: 10.1137/0153068. |
[26] |
J. P. Tian, S. Liao and J. Wang, Dynamical Analysis and Control Strategies in Modeling Cholera, 2010. Available from: http://www.math.wm.edu/~jptian/preprints/pr-7-ode-cholera.pdf. |
[27] |
J. P. Tian and J. Wang, Global stability for cholera epidemic model, Math. Biosci., 232 (2011), 31-41.doi: 10.1016/j.mbs.2011.04.001. |
[28] |
J. H. Tien and D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol., 72 (2010), 1506-1533.doi: 10.1007/s11538-010-9507-6. |
[29] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6. |
[30] |
G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985. |