2014, 11(3): 641-665. doi: 10.3934/mbe.2014.11.641

Global stability of an age-structured cholera model

1. 

Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, China, China

2. 

Department of Mathematics, Xinyang Normal University, Xinyang 464000

Received  November 2012 Revised  August 2013 Published  January 2013

In this paper, an age-structured epidemic model is formulated to describe the transmission dynamics of cholera. The PDE model incorporates direct and indirect transmission pathways, infection-age-dependent infectivity and variable periods of infectiousness. Under some suitable assumptions, the PDE model can be reduced to the multi-stage models investigated in the literature. By using the method of Lyapunov function, we established the dynamical properties of the PDE model, and the results show that the global dynamics of the model is completely determined by the basic reproduction number $\mathcal R_0$: if $\mathcal R_0 < 1$ the cholera dies out, and if $\mathcal R_0 >1$ the disease will persist at the endemic equilibrium. Then the global results obtained for multi-stage models are extended to the general continuous age model.
Citation: Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641
References:
[1]

J. R. Andrews and S. Basu, Transmission dynamics and control of cholera in Haiti: An epidemic model,, Lancet, 377 (2011), 1248.  doi: 10.1016/S0140-6736(11)60273-0.  Google Scholar

[2]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and computation of the basic reproduction ratio $R_0$ in models for infections diseases in hetereogeneous populations,, J. Math. Biol., 28 (1998), 365.  doi: 10.1007/BF00178324.  Google Scholar

[3]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infections Disease: Model Building, Analysis and Interpretation,, Wiley, (2000).   Google Scholar

[4]

Z. L. Feng, W. Z. Huang and C. Castillo-Chavez, Global behavior of a multi-group SIS epidemic model with age structure,, J. Diff. Equs., 218 (2005), 292.  doi: 10.1016/j.jde.2004.10.009.  Google Scholar

[5]

H. I. Freedman and J. W. H. So, Global stability and persistence of simple food chains,, Math. Biosci., 76 (1985), 69.  doi: 10.1016/0025-5564(85)90047-1.  Google Scholar

[6]

B. S. Goh, Global stability in many-species systems,, Amer. Natur., 111 (1977), 135.  doi: 10.1086/283144.  Google Scholar

[7]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs 25, (1988).   Google Scholar

[8]

J. K. Hale and P. Waltman, Persistence in infinite dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388.  doi: 10.1137/0520025.  Google Scholar

[9]

J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems: Mathematical Aspects of Selection,, Cambridge University Press, (1988).   Google Scholar

[10]

G. Huang, X. N. Liu and Y. Takeuchi, Lyapunov function and global stability for age-structured HIV infection model,, SIAM J. Appl. Math., 72 (2012), 25.  doi: 10.1137/110826588.  Google Scholar

[11]

M. Iannelli, Mathematical Theory of Age-structured Population Dynamics,, Applied Mathematics Monographs 7, (1995).   Google Scholar

[12]

H. Inaba, A semigroup approach to the strong ergodic theorem of the multistate stable population process,, Math. Popul. Studi., 17 (1988), 47.  doi: 10.1080/08898488809525260.  Google Scholar

[13]

A. L. Lloyd, Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods,, Proc. Roy. Soc. Lond. B, 268 (2001), 985.  doi: 10.1098/rspb.2001.1599.  Google Scholar

[14]

A. L. Lloyd, Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics,, Theor. Popul. Biol., 60 (2001), 59.  doi: 10.1006/tpbi.2001.1525.  Google Scholar

[15]

P. Magal, Compact attractors for time periodic age-structured population models,, Electron. J. Diff. Equs., 65 (2001), 1.   Google Scholar

[16]

P. Magal and H. R. Thieme, Eventual compactness for a semiflow generated by an age-structured models,, Communications on Pure and Applied Analysis, 3 (2004), 695.  doi: 10.3934/cpaa.2004.3.695.  Google Scholar

[17]

P. Magal and X. Q. Zhao, Global attracotor in uniformly persistence dynamical systems,, SIAM J. Math. Anal., 37 (2005), 251.  doi: 10.1137/S0036141003439173.  Google Scholar

[18]

E. D'Agata, P. Magal, S. Ruan and G. F. Webb, Asymptotical behavior in nosocomial epidemic model with antibiotic resistance,, Diff. Integr. Equs., 19 (2006), 573.   Google Scholar

[19]

P. Magal, C. C. McCluskey and G. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109.  doi: 10.1080/00036810903208122.  Google Scholar

[20]

P. Magal and C. McCluskey, Two group infection age model: an application to nosocomial infection,, SIAM J. Appl. Math., 73 (2013), 1058.  doi: 10.1137/120882056.  Google Scholar

[21]

F. A. Milner and A. Pugliese, Periodic solutions: a robust numerical method for an SIR model of epidemics,, J. Math. Biol., 39 (1999), 471.  doi: 10.1007/s002850050175.  Google Scholar

[22]

Z. S. Shuai and P. Van den Driessche, Global dynamics of cholera models with differential infectivity,, Math. Biosci., 234 (2011), 118.  doi: 10.1016/j.mbs.2011.09.003.  Google Scholar

[23]

Z. S. Shuai, J. H. Tien and P. van den Driessche, Cholera models with hyperinfectivity and temporary immunity,, Bull. Math. Biol., 74 (2010), 2423.  doi: 10.1007/s11538-012-9759-4.  Google Scholar

[24]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators,, Diff. Integr. Equs., 3 (1990), 1035.   Google Scholar

[25]

H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics if HIV/AIDs?, SIAM J. Appl. Math., 53 (1993), 1447.  doi: 10.1137/0153068.  Google Scholar

[26]

J. P. Tian, S. Liao and J. Wang, Dynamical Analysis and Control Strategies in Modeling Cholera,, 2010. Available from: , ().   Google Scholar

[27]

J. P. Tian and J. Wang, Global stability for cholera epidemic model,, Math. Biosci., 232 (2011), 31.  doi: 10.1016/j.mbs.2011.04.001.  Google Scholar

[28]

J. H. Tien and D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model,, Bull. Math. Biol., 72 (2010), 1506.  doi: 10.1007/s11538-010-9507-6.  Google Scholar

[29]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[30]

G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics,, Marcel Dekker, (1985).   Google Scholar

show all references

References:
[1]

J. R. Andrews and S. Basu, Transmission dynamics and control of cholera in Haiti: An epidemic model,, Lancet, 377 (2011), 1248.  doi: 10.1016/S0140-6736(11)60273-0.  Google Scholar

[2]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and computation of the basic reproduction ratio $R_0$ in models for infections diseases in hetereogeneous populations,, J. Math. Biol., 28 (1998), 365.  doi: 10.1007/BF00178324.  Google Scholar

[3]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infections Disease: Model Building, Analysis and Interpretation,, Wiley, (2000).   Google Scholar

[4]

Z. L. Feng, W. Z. Huang and C. Castillo-Chavez, Global behavior of a multi-group SIS epidemic model with age structure,, J. Diff. Equs., 218 (2005), 292.  doi: 10.1016/j.jde.2004.10.009.  Google Scholar

[5]

H. I. Freedman and J. W. H. So, Global stability and persistence of simple food chains,, Math. Biosci., 76 (1985), 69.  doi: 10.1016/0025-5564(85)90047-1.  Google Scholar

[6]

B. S. Goh, Global stability in many-species systems,, Amer. Natur., 111 (1977), 135.  doi: 10.1086/283144.  Google Scholar

[7]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs 25, (1988).   Google Scholar

[8]

J. K. Hale and P. Waltman, Persistence in infinite dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388.  doi: 10.1137/0520025.  Google Scholar

[9]

J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems: Mathematical Aspects of Selection,, Cambridge University Press, (1988).   Google Scholar

[10]

G. Huang, X. N. Liu and Y. Takeuchi, Lyapunov function and global stability for age-structured HIV infection model,, SIAM J. Appl. Math., 72 (2012), 25.  doi: 10.1137/110826588.  Google Scholar

[11]

M. Iannelli, Mathematical Theory of Age-structured Population Dynamics,, Applied Mathematics Monographs 7, (1995).   Google Scholar

[12]

H. Inaba, A semigroup approach to the strong ergodic theorem of the multistate stable population process,, Math. Popul. Studi., 17 (1988), 47.  doi: 10.1080/08898488809525260.  Google Scholar

[13]

A. L. Lloyd, Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods,, Proc. Roy. Soc. Lond. B, 268 (2001), 985.  doi: 10.1098/rspb.2001.1599.  Google Scholar

[14]

A. L. Lloyd, Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics,, Theor. Popul. Biol., 60 (2001), 59.  doi: 10.1006/tpbi.2001.1525.  Google Scholar

[15]

P. Magal, Compact attractors for time periodic age-structured population models,, Electron. J. Diff. Equs., 65 (2001), 1.   Google Scholar

[16]

P. Magal and H. R. Thieme, Eventual compactness for a semiflow generated by an age-structured models,, Communications on Pure and Applied Analysis, 3 (2004), 695.  doi: 10.3934/cpaa.2004.3.695.  Google Scholar

[17]

P. Magal and X. Q. Zhao, Global attracotor in uniformly persistence dynamical systems,, SIAM J. Math. Anal., 37 (2005), 251.  doi: 10.1137/S0036141003439173.  Google Scholar

[18]

E. D'Agata, P. Magal, S. Ruan and G. F. Webb, Asymptotical behavior in nosocomial epidemic model with antibiotic resistance,, Diff. Integr. Equs., 19 (2006), 573.   Google Scholar

[19]

P. Magal, C. C. McCluskey and G. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109.  doi: 10.1080/00036810903208122.  Google Scholar

[20]

P. Magal and C. McCluskey, Two group infection age model: an application to nosocomial infection,, SIAM J. Appl. Math., 73 (2013), 1058.  doi: 10.1137/120882056.  Google Scholar

[21]

F. A. Milner and A. Pugliese, Periodic solutions: a robust numerical method for an SIR model of epidemics,, J. Math. Biol., 39 (1999), 471.  doi: 10.1007/s002850050175.  Google Scholar

[22]

Z. S. Shuai and P. Van den Driessche, Global dynamics of cholera models with differential infectivity,, Math. Biosci., 234 (2011), 118.  doi: 10.1016/j.mbs.2011.09.003.  Google Scholar

[23]

Z. S. Shuai, J. H. Tien and P. van den Driessche, Cholera models with hyperinfectivity and temporary immunity,, Bull. Math. Biol., 74 (2010), 2423.  doi: 10.1007/s11538-012-9759-4.  Google Scholar

[24]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators,, Diff. Integr. Equs., 3 (1990), 1035.   Google Scholar

[25]

H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics if HIV/AIDs?, SIAM J. Appl. Math., 53 (1993), 1447.  doi: 10.1137/0153068.  Google Scholar

[26]

J. P. Tian, S. Liao and J. Wang, Dynamical Analysis and Control Strategies in Modeling Cholera,, 2010. Available from: , ().   Google Scholar

[27]

J. P. Tian and J. Wang, Global stability for cholera epidemic model,, Math. Biosci., 232 (2011), 31.  doi: 10.1016/j.mbs.2011.04.001.  Google Scholar

[28]

J. H. Tien and D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model,, Bull. Math. Biol., 72 (2010), 1506.  doi: 10.1007/s11538-010-9507-6.  Google Scholar

[29]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[30]

G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics,, Marcel Dekker, (1985).   Google Scholar

[1]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[2]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[6]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[7]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[8]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[11]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[12]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[13]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[16]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[17]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[18]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[19]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[20]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]