Citation: |
[1] |
L. M. Abia, O. Angulo, J. C. Lopez-Marcos and M. A. Lopez-Marcos, Numerical schemes for a size-structured cell population model with equal fission, Mathematical and Computer Modelling, 50 (2009), 653-664.doi: 10.1016/j.mcm.2009.05.023. |
[2] |
L. M. Abia, O. Angulo and J. C. Lopez-Marcos, Size-structured population dynamics models and their numerical solutions, Discrete and Continuous Dynamical Systems - Series B, 4 (2004), 1203-1222.doi: 10.3934/dcdsb.2004.4.1203. |
[3] |
L. M. Abia and J. C. Lopez-Marcos, Second order schemes for age-structured population equations, Journal of Biological Systems, 5 (1997), 1-16.doi: 10.1142/S0218339097000023. |
[4] |
A. S. Ackleh, B. Ma and J. J. Thibodeaux, A second-order high resolution finite difference scheme for a structured erythropoiesis model subject to malaria infection, Mathematical Biosciences, 245 (2013), 2-11.doi: 10.1016/j.mbs.2013.03.007. |
[5] |
A. S. Ackleh and K. Deng, A monotone approximation for a nonlinear non autonomous size-structured population model, Applied Mathematics and Computation, 108 (2000), 103-113.doi: 10.1016/S0096-3003(99)00002-8. |
[6] |
A. S. Ackleh, K. Deng, K. Ito and J. Thibodeaux, A structured erythropoiesis model with nonlinear cell maturation velocity and hormone decay rate, Mathematical Biosciences and Engineering, 204 (2006), 21-48.doi: 10.1016/j.mbs.2006.08.004. |
[7] |
A. S. Ackleh and K. Ito, An implicit finite difference scheme for the nonlinear size-structured population model, Numerical Functional Analysis and Optimization, 18 (1997), 865-884.doi: 10.1080/01630569708816798. |
[8] |
A. S. Ackleh, K. Deng and Q. Huang, Existence-uniqueness results and difference approximations for an amphibian juvenile-adult model, Contemporary Mathematics, 513 (2010), 1-23.doi: 10.1090/conm/513/10072. |
[9] |
A. S. Ackleh, K. L. Sutton, K. N. Mutoji, A. Mallick and D. G. Ennis, A structured model for the transmission dynamics of Mycobacterium marinum between aquatic animals, Journal of Biological Systems, doi:10.1142/S0218339014500028. |
[10] |
A. S. Ackleh and J. Thibodeaux, Parameter estimation in a structured erythropoiesis model, Mathematical Biosciences and Engineering, 5 (2008), 601-616.doi: 10.3934/mbe.2008.5.601. |
[11] |
O. Angulo and J. C. Lopez-Marcos, Numerical schemes for size-structured population equations, Mathematical Biosciences, 157 (1999), 169-188.doi: 10.1016/S0025-5564(98)10081-0. |
[12] |
O. Angulo and J. C. Lopez-Marcos, Numerical integration of fully nonlinear size-structured population models, Applied Numerical Mathematics, 50 (2004), 291-327.doi: 10.1016/j.apnum.2004.01.007. |
[13] |
T. Arbogast and F. A. Milner, A finite element method for a two-sex model of population dynamics, SIAM Journal of Numerical Analysis, 26 (1989), 1474-1486.doi: 10.1137/0726086. |
[14] |
H. T. Banks, C. E. Cole, P. M. Schlosser and H. T. Tran, Modeling and optimal regulation of erythropoiesis subject to benzene intoxication, Mathematical Biosciences and Engineering, 1 (2004), 15-48.doi: 10.3934/mbe.2004.1.15. |
[15] |
H. T. Banks, F. Kappel and C. Wang, A semigroup formulation of a nonlinear size-structured distributed rate population model, International Series of Numerical Mathematics, 118 (1994), 1-19. |
[16] |
D. Bleed, C. Dye and M. C. Raviglione, Dynamics and control of the global tuberculosis epidemic, Current Opinion in Pulmonary Medicine, 6 (2000), 174-179.doi: 10.1097/00063198-200005000-00002. |
[17] |
G. W. Broussard and D. G. Ennis, Mycobacterium marinum produces long-term chronic infections in medaka: A new animal model for studying human tuberculosis, Comparative Biochemistry and Physiology, Part C, 145 (2007), 45-54.doi: 10.1016/j.cbpc.2006.07.012. |
[18] |
G. W. Broussard, M. B. Norris, R. N. Winn, J. Fournie, A. Schwindt, M. L. Kent and D. G. Ennis, Chronic mycobacterosis acts as a tumor promoter for hepatocarcinomas in Japanese medaka, Comparative Biochemistry and Physiology, Part C, 149 (2009), 152-160. |
[19] |
C. L. Cosma, D. R. Sherman and L. Ramakrishnan, The secret lives of the pathogenic mycobacteria, Annual Review of Microbiology 57 (2003), 641-676. |
[20] |
J. M. Davis, H. Clay, J. L. Lewis, N. Ghori, P. Herbomel and L. Ramakrishnan, Real-time visualization of Mycobacterium-macrophage interactions leading of initiation of granuloma formation in zebrafish embryos, Immunity, 17 (2002), 693-702.doi: 10.1016/S1074-7613(02)00475-2. |
[21] |
S. H. El-Etr, L. Yan and J. D. Cirillo, Fish monocytes as a model for mycobacterial host-pathogen interactions, Infection and Immunity, 69 (2001), 7310-7317.doi: 10.1128/IAI.69.12.7310-7317.2001. |
[22] |
R. E. Gozlan, S. St-Hilaire, S. W. Feist, P. Martin and M. L. Kent, Disease threat to European fish, Nature, 435 (2005), 1046.doi: 10.1038/4351046a. |
[23] |
A. Harten, High resolution schemes for hyperbolic conservation laws, Journal of Computational Physics, 49 (1983), 357-393.doi: 10.1016/0021-9991(83)90136-5. |
[24] |
R. P. Hedrick, T. McDowell and J. Groff, Mycobacteriosis in cultured striped bass from California, Journal of Wildlife Diseases, 23 (1987), 391-395.doi: 10.7589/0090-3558-23.3.391. |
[25] |
W. Huyer, A size structured population model with dispersion, Journal of Mathematical Analysis and Applications, 181 (1994), 716-754.doi: 10.1006/jmaa.1994.1054. |
[26] |
M. Iannelli, T. Kostova and F. A. Milner, A fourth-order method for numerical integration of age- and size-structured population models, Numerical Methods for Partial Differential Equations, 25 (2009), 918-930.doi: 10.1002/num.20381. |
[27] |
T. Iwamatsu, Stages of normal development in the medaka oryzias latipes, Zoological Science, 11 (1994), 825-839. |
[28] |
J. M. Jacobs, C. B. Stine, A. M. Baya and M. L. Kent, A review of mycobacteriosis in marine fish, Journal of Fish Diseases, 32 (2009), 119-130.doi: 10.1111/j.1365-2761.2008.01016.x. |
[29] |
T. Kostova, An explicit third-order numerical method for size-structured population equations, Numerical Methods for Partial Differential Equations, 19 (2003), 1-21.doi: 10.1002/num.10037. |
[30] |
P. K. Mehta, A. K. Pandey, S. Subbian, S. H. El-Etr, S. L. Cirillo, M. M. Samrakandi and J. D. Cirillo, Identification of Mycobacterium marinum macrophage infection mutants, Microbial Pathogenesis, 40 (2006), 139-151.doi: 10.1016/j.micpath.2005.12.002. |
[31] |
E. Miltner, K. Daroogheh, P. K. Mehta, S. L. Cirillo, J. D. Cirillo and L. E. Bermudez, Identification of Mycobacterium avium genes that affect invasion of the intestinal epithelium, Infection and Immunity, 73 (2005), 4214-4221.doi: 10.1128/IAI.73.7.4214-4221.2005. |
[32] |
N. Moes, J. Dolbow and T. Belytschko, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, 46 (1999), 131-150.doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.3.CO;2-A. |
[33] |
K. Nadine Mutoji, Investigation into Mechanisms of Mycobacterial Transmission Between Fish, Ph.D. Dissertation, University of Louisiana at Lafayette, 2011. |
[34] |
K. N. Mutoji and D. G. Ennis, Expression of common fluorescent reporters may modulate virulence for Mycobacterium marinum: Dramatic attenuation results from GFP over-expression, Comparative Biochemistry and Physiology,Part C, 155 (2012), 39-48.doi: 10.1016/j.cbpc.2011.05.011. |
[35] |
A. Oscar and J. C. Lopez-Marcos, Numerical schemes for size-structured population equations, Mathematical Biosciences, 157 (1999), 169-188.doi: 10.1016/S0025-5564(98)10081-0. |
[36] |
M. G. Prouty, N. E. Correa, L. P. Barker, P. Jagadeeswaran and K. E. Klose, Zebrafish-Mycobacterium marinum model for mycobacterial pathogenesis, FEMS Microbiology Letters, 225 (2003), 177-182. |
[37] |
M. C. Raviglione, D. E. Snider Jr and A. Kochi, Global epidemiology of tuberculosis: Morbidity and mortality of a worldwide epidemic, Journal of the American Medical Association, 40 (1996), 220-226.doi: 10.1097/00132586-199604000-00069. |
[38] |
J. Shen, C. W. Shu and M. Zhang, High resolution schemes for a hierarchical size structured model, SIAM Journal on Numerical Analysis, 45 (2007), 352-370.doi: 10.1137/050638126. |
[39] |
J. Shen, C. W. Shu and M. Zhang, A high order WENO scheme for a hierarchical size-structured population model, Journal of Scientific Computing, 33 (2007), 279-291.doi: 10.1007/s10915-007-9152-x. |
[40] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994. |
[41] |
T. P. Stinear, T. Seemann, P. F. Harrison, G. A. Jenkin, J. K. Davies, P. D. R. Johnson, Z. Abdellah, C. Arrowsmith, T. Chillingworth, C. Churcher, K. Clarke, A. Cronin, P. Davis, I. Goodhead, N. Holroyd, K. Jagels, A. Lord, S. Moule, K. Mungall, H. Norbertczak, M. A. Quail, E. Rabbinowitsch, D. Walker, B. White, S. Whitehead, P. L. C. Small, R. Brosch, L. Ramakrishnan, M. A. Fischbach, J. Parkhill and S. T. Cole, Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis, Genome Research, 18 (2008), 729-741.doi: 10.1101/gr.075069.107. |
[42] |
A. M. Talaat, R. Reimschuessel, S. S. Wasserman and M. Trucksis, Goldfish, Carassius auratus, a novel animal model for the study of Mycobacterium marinum pathogenesis, Infection and Immunity, 66 (1998), 2938-2942. |
[43] |
J. J. Thibodeaux, Modeling erythropoiesis subject to malaria infection, Mathematical Biosciences, 225 (2010), 59-67.doi: 10.1016/j.mbs.2010.02.001. |
[44] |
D. M. Tobin and L. Ramakrishnan, Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis, Cellular Microbiology, 10 (2008), 1027-1039.doi: 10.1111/j.1462-5822.2008.01133.x. |
[45] |
W. Walter, Ordinary Differential Equations, Springer, New York, 1998.doi: 10.1007/978-1-4612-0601-9. |
[46] |
R. Zhang, M. Zhang and C. W. Shu, High order positivity-preserving finite volume WENO schemes for a hierarchical size-structured population model, Journal of Computational and Applied Mathematics, 236 (2011), 937-949.doi: 10.1016/j.cam.2011.05.007. |