Citation: |
[1] |
T. Bulter, S.-G. Lee, W.-W. Wong, E. Fung, M. R. Connor and J. C. Liao, Design of artificial cell-cell communication using gene and metabolic networks, Proc. Natl. Acad. Sci. USA, 101 (2004), 2299-2304.doi: 10.1073/pnas.0306484101. |
[2] |
R. M. Bryce and K. B. Sprague, Revisiting detrended fluctuation analysis, Scientific Reports 2, 2012.doi: 10.1038/srep00315. |
[3] |
F. Chazal, D. Cohen-Steiner, L. J. Guibas, F. Mémoli and S. Oudot, Gromov-hausdorff stable signatures for shapes using persistence, Computer Graphics Forum, 28 (2009), 1393-1403.doi: 10.1111/j.1467-8659.2009.01516.x. |
[4] |
F. Chazal, L.Guibas, S. Oudot and P. Skraba, Persistence-based clustering in riemannian manifolds, Proc. 27th Annual ACM Symposium on Computational Geometry, (2011), 97-106.doi: 10.1145/1998196.1998212. |
[5] |
F. Chazal, V. de Silva and S. Oudot, Persistence Stability for Geometric Complexes, Geometriae Dedicata, 2013.doi: 10.1007/s10711-013-9937-z. |
[6] |
D. Cohen-Steiner, H. Edelsbrunner, J. Harer and Y. Mileyko, Lipschitz Functions Have $L_p$-Stable Persistence, Foundations of Computational Mathematics, 10 (2010), 127-139.doi: 10.1007/s10208-010-9060-6. |
[7] |
P. D. Ditlevsen and S. J. Johnsen, Tipping points: Early warning and wishful thinking, Geophysical Research Letters, 37 (2010), L19703.doi: 10.1029/2010GL044486. |
[8] |
H. Edelsbrunner and J. Harer, Persistent homology - a survey, in Surveys on Discrete and Computational Geometry. Twenty Years Later, 257-282, eds. J. E. Goodman, J. Pach and R. Pollack, Contemporary Mathematics 453, Amer. Math. Soc., Providence, Rhode Island, (2008).doi: 10.1090/conm/453/08802. |
[9] |
H. Edelsbrunner and M. Morozov, Persistent Homology: Theory and Applications, Proceedings of the European Congress of Mathematics, 2012. |
[10] |
M. Elowitz and S. Leibler, A synthetic oscillatory network of transcriptional regulators, Nature, 403 (2000), 335-338. |
[11] |
N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, Journal of Differential Equations, 31 (1979), 53-98.doi: 10.1016/0022-0396(79)90152-9. |
[12] |
M. Gameiro, Y. Hiraoka, S. Izumi, M. Kramar, K. Mischaikow and V. Nanda, A Topological Measurement of Protein Compressibility, preprint, 2013. |
[13] |
T. S. Gardner, C. R. Cantor and J. J. Collins, Construction of a genetic toggle switch in Escherichia coli, Nature, 403 (2000), 339-342. |
[14] |
J. Hasty, J. Pradines, M. Dolnik and J. J. Collins, Noise-based switches and amplifiers for gene expression, PNAS, 97 (2000), 2075-2080.doi: 10.1073/pnas.040411297. |
[15] |
A. Hatcher, Algebraic Topology, Cambridge University Press, 2002. |
[16] |
R. M. Jones, Matlab Code for the DFA Procedure, http://criticaltransitions.wikispot.org/ (2013). |
[17] |
C. Kuehn, A mathematical framework for critical transitions: Bifurcations, fast-slow systems and stochastic dynamics, Physica D: Nonlinear Phenomena, 240 (2011), 1020-1035.doi: 10.1016/j.physd.2011.02.012. |
[18] |
C. Kuehn, A Mathematical Framework for Critical Transitions: Normal Forms, Variance and Applications, Journal of Nonlinear Science,, 23 (2013), 457-510.doi: 10.1007/s00332-012-9158-x. |
[19] |
M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points -fold and canard points in two dimensions, SIAM J. of Math. Anal., 33 (2001), 286- 314.doi: 10.1137/S0036141099360919. |
[20] |
L. Kondic, A. Goullet, C. S. O'Hern, M. Kramar, K. Mischaikow and R. P. Behringer, Topology of force networks in compressed granular media, Europhys. Lett., 97 (2012), 54001.doi: 10.1209/0295-5075/97/54001. |
[21] |
M. Kramar, C++ code to compute the Wasserstein metric, Personal communication, http://www.math.rutgers.edu/ miroslav (2013). |
[22] |
A. Leier, P. D. Kuo, W. Banzhaf and K. Burrage, Evolving noisy oscillatory dynamics in genetic regulatory networks, In EuroGP'06 Proceedings of the 9th European conference on Genetic Programming, LNCS, 3905 (2006), 290-299.doi: 10.1007/11729976_26. |
[23] |
V. N. Livina and T. M. Lenton, A modified method for detecting incipient bifurcations in a dynamical system, Geophys. Res. Lett., 34 (2007), L03712.doi: 10.1029/2006GL028672. |
[24] |
V. Nanda, The Perseus Software Project for Rapid Computation of Persistent Homology, http://www.math.rutgers.edu/ vidit/perseus.html |
[25] |
M. Nicolau, A. J. Levine and G. Carlsson, Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, PNAS, 108 (2011), 7265-7270.doi: 10.1073/pnas.1102826108. |
[26] |
B. Novak and J. J. Tyson, Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos, J. Cell. Sci., 106 (1993), 1153-1168. |
[27] |
A. A. Ptitsyn, S. Zvonic and J. M. Gimble, Digital signal processing reveals circadian baseline oscillation in majority of mammalian genes, PLoS Comput Biol, 3 (2007), 1108-1114.doi: 10.1371/journal.pcbi.0030120. |
[28] |
M. Scheffer et al., Early-warning signals for critical transitions, Nature, 461 (2009), 53-59. |
[29] |
M. Scheffer et al, Anticipating critical transitions, Science, 338 (2012), 344, DOI: 10.1126/science.1225244 |
[30] |
J. M. T. Thompson and J. Sieber, Climate tipping as a noisy bifurcation: A predictive technique, IMA Journal of Applied Mathematics, 76 (2011), 27-46.doi: 10.1093/imamat/hxq060. |
[31] |
J. J. Tyson, K. C. Chen and B. Novak, Sniffers, buzzers, toggles and blinkers: Dynamics of regulatory and signaling pathways in the cell, Curr. Opin. Cell. Biol., 15 (2003), 221-231.doi: 10.1016/S0955-0674(03)00017-6. |
[32] |
A. J. Zomorodian, Topology for Computing, Cambridge University, 2005.doi: 10.1017/CBO9780511546945. |