Citation: |
[1] |
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag. New York, 2001. |
[2] |
F. Clarke, Optimization and Nonsmooth Analysis, John Wiley, New York, 1983. |
[3] |
F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Springer-Verlag, London, 2013.doi: 10.1007/978-1-4471-4820-3. |
[4] |
F. Clarke and MdR de Pinho, Optimal control problems with mixed constraints, SIAM J. Control Optim., 48, (2010), 4500-4524.doi: 10.1137/090757642. |
[5] |
M. d. R. de Pinho, M. M. Ferreira, U. Ledzewicz and H. Schaettler, A model for cancer chemotherapy with state-space constraints, Nonlinear Analysis, 63 (2005), e2591-e2602. |
[6] |
M. d. R. de Pinho, P. Loewen and G. N. Silva, A weak maximum principle for optimal control problems with nonsmooth mixed constraints, Set-Valued and Variational Analysis, 17 (2009), 203-2219.doi: 10.1007/s11228-009-0108-1. |
[7] |
E. Demirci, A. Unal and N. Ozalp, A fractional order seir model with density dependent death rate, MdR de Pinho,Hacet. J. Math. Stat., 40 (2011), 287-295. |
[8] |
P. Falugi, E. Kerrigan and E. van Wyk, Imperial College London Optimal Control Software User Guide (ICLOCS), Department of Electrical and Electronic Engineering, Imperial College London, London, England, UK, 2010. |
[9] |
R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the maximum principles for optimal control problems with state constraints, SIAM Review, 37 (1995), 181-218.doi: 10.1137/1037043. |
[10] |
M. R. Hestenes, Calculus of Variations and Optimal Control Theory, $2^{nd}$ Edition (405 pages), John Wiley, New York, 1980. |
[11] |
H. W. Hethcote, The basic epidemiology models: models, expressions for $R_0$, parameter estimation, and applications, In Mathematical Understanding of Infectious Disease Dynamics (S. Ma and Y. Xia, Eds.), Vol. 16. Chap. 1, pp. 1-61, World Scientific Publishing Co. Pte. Ltd., Singapore, 2008.doi: 10.1142/9789812834836_0001. |
[12] |
W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, Bulletin of Mathematical Biology, 53 (1991), 35-55. |
[13] |
H. Maurer and S. Pickenhain, Second order sufficient conditions for optimal control problems with mixed control-state constraints, J. Optim. Theory Appl., 86 (1995), 649-667.doi: 10.1007/BF02192163. |
[14] |
Helmut Maurer and H.J. Oberle, Second order sufficient conditions for optimal control problems with free final time: The Riccati approach, SIAM J. Control Optm., 41 (2002), 380-403.doi: 10.1137/S0363012900377419. |
[15] |
N. P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control: Second-Order Necessary And Sufficient Optimality Conditions In Calculus Of Variations And Optimal Control, SIAM Advances in Design and Control, 24, 2012.doi: 10.1137/1.9781611972368. |
[16] |
D. S. Naidu, T. Fernando and K. R. Fister, Optimal control in diabetes, Optim. Control Appl. Meth., 32 (2011), 181-184.doi: 10.1002/oca.990. |
[17] |
R.M. Neilan and S. Lenhart, An introduction to optimal control with an application in disease modeling, DIMACS Series in Discrete Mathematics, 75 (2010), 67-81. |
[18] |
L.T. Paiva, Optimal Control in Constrained and Hybrid Nonlinear Systems, Project Report, 2013, http://paginas.fe.up.pt/~faf/ProjectFCT2009/report.pdf. |
[19] |
O. Prosper, O. Saucedo, D. Thompson, G. T. Garcia, X. Wang and C. Castillo-Chavez, Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza, Mathematical Biosciences and Engineering, 8 (2011), 141-170.doi: 10.3934/mbe.2011.8.141. |
[20] |
P. Shi and L. Dong, Dynamical models for infectious diseases with varying population size and vaccinations, Journal of Applied Mathematics, 2012 (2012), 1-20.doi: 10.1155/2012/824192. |
[21] |
H. Schäettler and U. Ledzewicz, Geometric Optimal Control. Theory, Methods and Examples, Springer, New York, 2012.doi: 10.1007/978-1-4614-3834-2. |
[22] |
C. Sun and Y. H. Hsieh, Global analysis of an SEIR model with varying population size and vaccination, Applied Mathematical Modelling, 34 (2010), 2685-2697.doi: 10.1016/j.apm.2009.12.005. |
[23] | |
[24] |
A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.doi: 10.1007/s10107-004-0559-y. |