# American Institute of Mathematical Sciences

2014, 11(4): 877-918. doi: 10.3934/mbe.2014.11.877

## Dynamics of a predator-prey system with prey subject to Allee effects and disease

 1 Science and Mathematics Faculty, School of Letters and Sciences, Arizona State University, Mesa, AZ 85212 2 Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India, India, India

Received  March 2013 Revised  September 2013 Published  March 2014

In this article, we propose a general predator-prey system where prey is subject to Allee effects and disease with the following unique features: (i) Allee effects built in the reproduction process of prey where infected prey (I-class) has no contribution; (ii) Consuming infected prey would contribute less or negatively to the growth rate of predator (P-class) in comparison to the consumption of susceptible prey (S-class). We provide basic dynamical properties for this general model and perform the detailed analysis on a concrete model (SIP-Allee Model) as well as its corresponding model in the absence of Allee effects (SIP-no-Allee Model); we obtain the complete dynamics of both models: (a) SIP-Allee Model may have only one attractor (extinction of all species), two attractors (bi-stability either induced by small values of reproduction number of both disease and predator or induced by competition exclusion), or three attractors (tri-stability); (b) SIP-no-Allee Model may have either one attractor (only S-class survives or the persistence of S and I-class or the persistence of S and P-class) or two attractors (bi-stability with the persistence of S and I-class or the persistence of S and P-class). One of the most interesting findings is that neither models can support the coexistence of all three S, I, P-class. This is caused by the assumption (ii), whose biological implications are that I and P-class are at exploitative competition for S-class whereas I-class cannot be superior and P-class cannot gain significantly from its consumption of I-class. In addition, the comparison study between the dynamics of SIP-Allee Model and SIP-no-Allee Model lead to the following conclusions: 1) In the presence of Allee effects, species are prone to extinction and initial condition plays an important role on the surviving of prey as well as its corresponding predator; 2) In the presence of Allee effects, disease may be able to save prey from the predation-driven extinction and leads to the coexistence of S and I-class while predator can not save the disease-driven extinction. All these findings may have potential applications in conservation biology.
Citation: Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay. Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences & Engineering, 2014, 11 (4) : 877-918. doi: 10.3934/mbe.2014.11.877
##### References:
 [1] W. C. Allee, Animal Aggregations. A Study in General Sociology, University of Chicago Press, Chicago, 1931. doi: 10.5962/bhl.title.7313. [2] L. H. Alvarez, Optimal harvesting under stochastic fluctuations and critical depensation, Mathematical Biosciences, 152 (1998), 63-85. doi: 10.1016/S0025-5564(98)10018-4. [3] P. Amarasekare, Interactions between local dynamics and dispersal: Insights from single species models, Theoretical Population Biology, 53 (1998), 44-59. doi: 10.1006/tpbi.1997.1340. [4] E. Angulo, G. W. Roemer, L. Berec, J. Gascoigen and F. Courchamp, Double Allee effects and extinction in the island fox, Conservation Biology, 21 (2007), 1082-1091. doi: 10.1111/j.1523-1739.2007.00721.x. [5] N. Bairagi, P. K. Roy and J. Chattopadhyay, Role of infection on the stability of a predator-prey system with several response functions - A comparative study, Journal of Theoretical Biology, 248 (2007), 10-25. doi: 10.1016/j.jtbi.2007.05.005. [6] M. Begon, M. Bennett, R. G. Bowers, N. P. French, S. M. Hazel and J. Turner, A clarification of transmission terms in host-microparasite models: Numbers, densities and areas, Epidemiology and Infection, 129 (2002), 147-153. doi: 10.1017/S0950268802007148. [7] E. Beltrami and T. O. Carroll, Modelling the role of viral disease in recurrent phytoplankton blooms, Journal of Mathematical Biology, 32 (1994), 857-863. doi: 10.1007/BF00168802. [8] E. Beretta and Y. Kuang, Modelling and analysis of a marine bacteriophage infection, Mathematical Biosciences, 149 (1998), 57-76. doi: 10.1016/S0025-5564(97)10015-3. [9] F. S. Berezovskaya, B. Song and C. Castillo-Chavez, Role of prey dispersal and refuges on predator-prey dynamics, SIAM Journal on Applied Mathematics, 70 (2010), 1821-1839. doi: 10.1137/080730603. [10] G. Birkhoff and G. C. Rota, Ordinary Differential Equations, Massachusetts, Boston, 1982. [11] D. S. Boukal and L. Berec, Single-species Models of the Allee effect: Extinction boundaries, sex ratios and mate encounters, Journal of Theoretical Biology, 218 (2002), 375-394. doi: 10.1006/jtbi.2002.3084. [12] R. Burrows, H. Hofer and M. L. East, Population dynamics, intervention and survival in African wild dogs (Lycaon pictus), Proceedings of the Royal Society B: Biological Sciences, 262 (1995), 235-245. doi: 10.1098/rspb.1995.0201. [13] J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Analysis, 36 (1999), 747-766. doi: 10.1016/S0362-546X(98)00126-6. [14] J. Chattopadhyay and S. Pal, Viral infection on phytoplankton-zooplankton system-a mathematical model, Ecological Modelling, 151 (2002), 15-28. doi: 10.1016/S0304-3800(01)00415-X. [15] J. Chattopadhyay, R. Sarkar, M. E. Fritzche-Hoballah, T. Turlings and L. Bersier, Parasitoids may determine plant fitness - A mathematical model based on experimental data, Journal of Theoretical Biology, 212 (2001), 295-302. doi: 10.1006/jtbi.2001.2374. [16] J. Chattopadhyay, P. Srinivasu and N. Bairagi, Pelicans at risk in Salton Sea-an eco-epidemiological model-II, Ecological Modelling, 167 (2003), 199-211. doi: 10.1016/S0304-3800(03)00187-X. [17] D. L. Clifford, J. A. K. Mazet, E. J. Dubovi, D. K. Garcelon, T. J. Coonan, P. A. Conrad and L. Munson, Pathogen exposure in endangered island fox (Urocyon littoralis) populations: Implications for conservation management, Biological Conservation, 131 (2006), 230-243. doi: 10.1016/j.biocon.2006.04.029. [18] F. Courchamp, L. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, Oxford, 2008. doi: 10.1093/acprof:oso/9780198570301.001.0001. [19] F. Courchamp, T. Clutton-Brock and B. Grenfell, Inverse density dependence and the Allee effect, Trends in Ecology & Evolution, 14 (1999), 405-410. doi: 10.1016/S0169-5347(99)01683-3. [20] F. Courchamp, T. Clutton-Brock and B. Grenfell, Multipack dynamics and the Allee effect in the African wild dog, Lycaon pictus, Animal Conservation, 3 (2000), 277-285. doi: 10.1017/S1367943000001001. [21] F. Courchamp, B. Grenfell and T. Clutton-Brock, Impact of natural enemies on obligately cooperatively breeders, Oikos, 91 (2000), 311-322. doi: 10.1034/j.1600-0706.2000.910212.x. [22] J. Cushing and J. Hudson, Evolutionary dynamics and strong Allee effects, Journal of Biological Dynamics, 6 (2012), 941-958. doi: 10.1080/17513758.2012.697196. [23] A. Deredec and F. Courchamp, Combined impacts of Allee effects and parasitism, Oikos, 112 (2006), 667-679. doi: 10.1111/j.0030-1299.2006.14243.x. [24] J. Drake, Allee effects and the risk of biological invasion, Risk Analysis, 24 (2004), 795-802. doi: 10.1111/j.0272-4332.2004.00479.x. [25] J. Ferdy, F. Austerlitz, J. Moret, P. Gouyon and B. Godelle, Pollinator-induced density dependence in deceptive species, Oikos, 87 (1999), 549-560. doi: 10.2307/3546819. [26] H. I. Freedman, A model of predator-prey dynamics as modified by the action of parasite, Mathematical Biosciences, 99 (1990), 143-155. doi: 10.1016/0025-5564(90)90001-F. [27] A. Friedman and A. A. Yakubu, Fatal disease and demographic allee effect: Population persistence and extinction, Journal of Biological Dynamics, 6 (2012), 495-508. doi: 10.1080/17513758.2011.630489. [28] J. C. Gascoigne and R. N. Lipccius, Allee effects driven by predation, Journal of Applied Ecology, 41 (2004), 801-810. doi: 10.1111/j.0021-8901.2004.00944.x. [29] M. Groom, Allee effects limit population viability of an annual plant, The American Naturalist, 151 (1998), 487-496. doi: 10.1086/286135. [30] Y. Gruntfest, R. Arditi and Y. Dombronsky, A fragmented population in a varying environment, Journal of Theoretical Biology, 185 (1997), 539-547. doi: 10.1006/jtbi.1996.0358. [31] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, 1983. [32] F. M. D. Gulland, The Impact of Infectious Diseases on Wild Animal Populations-A Review. In: Ecology of Infectious Diseases in Natural Populations, Cambridge University Press, Cambridge, 1995. [33] K. P. Hadeler and H. I. Freedman, Predator-prey populations with parasitic infection, Journal of Mathematical Biology, 27 (1989), 609-631. doi: 10.1007/BF00276947. [34] H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 499-653. doi: 10.1137/S0036144500371907. [35] H. W. Hethcote, W. Wang, L. Han and Z. Ma, A predator-prey model with infected prey, Theoretical Population Biology, 66 (2004), 259-268. doi: 10.1016/j.tpb.2004.06.010. [36] F. M. Hilker, Population collapse to extinction: The catastrophic combination of parasitism and Allee effect, Journal of Biological Dynamics, 4 (2010), 86-101. doi: 10.1080/17513750903026429. [37] F. M. Hilker, M. Langlais and H. Malchow, The allee effect and infectious diseases: Extinction, multistability, and the (dis-)appearance of oscillations, The American Naturalist, 173 (2009), 72-88. doi: 10.1086/593357. [38] F. M. Hilker, M. Langlais, S. V. Petrovskii and H. Malchow, A diffusive SI model with Allee effect and application to FIV, Mathematical Biosciences, 206 (2007), 61-80. doi: 10.1016/j.mbs.2005.10.003. [39] F. M. Hilker and K. Schmitz, Disease-induced stabilization of predator-prey oscillations, Journal of Theoretical Biology, 255 (2008), 299-306. doi: 10.1016/j.jtbi.2008.08.018. [40] C. Holling, Some characteristics of simple types of predation and parasitism, Canadian Entomologist, 91 (1959), 385-398. [41] V. Hutson and K. Schmitt, Permanence and the dynamics of biological systems, Mathematical Biosciences, 111 (1992), 1-71. doi: 10.1016/0025-5564(92)90078-B. [42] J. Jacobs, Cooperation, optimal density and low density thresholds: yet another modification of the logistic model, Oecologia, 64 (1984), 389-395. doi: 10.1007/BF00379138. [43] S. R. J. Jang, Discrete-time host-parasitoid models with Allee effects: Density dependence versus parasitism, Journal of Difference Equations and Applications, 17 (2011), 525-539. doi: 10.1080/10236190903146920. [44] S. R. J. Jang, Allee effects in a discrete-time host-parasitoid model, Journal of Difference Equations and Applications, 12 (2006), 165-181. doi: 10.1080/10236190500539238. [45] Y. Kang, Dynamics of A General Contest Competition Two Species Model Subject to Strong Allee Effects, Submitted to the Journal of Theoretical Population Biology, 2013. (Under revision). [46] Y. Kang, Scramble competitions can rescue endangered species subject to strong Allee effects, Mathematical Biosciences, 241 (2013), 75-87. doi: 10.1016/j.mbs.2012.09.002. [47] Y. Kang, A. R. Bhowmick, S. K. Sasmal and J. Chattopadhyay, Host-parasitoid systems with predation-driven Allee effects in host population, preprint. [48] Y. Kang and C. Castillo-Chavez, Multiscale analysis of compartment models with dispersal, Journal of Biological Dynamics, 6 (2012), 50-79. doi: 10.1080/17513758.2012.713125. [49] Y. Kang and C. Castillo-Chavez, A Simple Epidemiological Model for Populations in The Wild with Allee Effects and Disease Modified Fitness, Journal of Discrete and Continuous Dynamical Systems-B, 2013, (Accepted). [50] Y. Kang and N. Lanchier, Expansion or extinction: Deterministic and stochastic two-patch models with Allee effects, Journal of Mathematical Biology, 62 (2011), 925-973. doi: 10.1007/s00285-010-0359-3. [51] Y. Kang and L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator, Journal of Mathematical Biology, 67 (2013), 1227-1259. doi: 10.1007/s00285-012-0584-z. [52] Y. Kang and A.-A. Yakubu, Weak Allee effects and species coexistence, Nonlinear Analysis: Real World Applications, 12 (2011), 3329-3345. doi: 10.1016/j.nonrwa.2011.05.031. [53] M. Kuussaari, I. Saccheri, M. Camara and I. Hanski, Allee effect and population dynamics in the Glanville fritillary butterfly, Oikos, 82 (1998), 384-392. doi: 10.2307/3546980. [54] B. Lamont, P. Klinkhamer and E. Witkowski, Population fragmentation may reduce fertility to zero in Banksia goodii-demonstration of the Allee effect, Oecologia, 94 (1993), 446-450. doi: 10.1007/BF00317122. [55] M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms, Theoretical Population Biology, 43 (1993), 141-158. doi: 10.1006/tpbi.1993.1007. [56] H. McCallum, N. Barlow and J. Hone, How should pathogen transmission be modelled? Trends in Ecology & Evolution, 16 (2001), 295-300. doi: 10.1016/S0169-5347(01)02144-9. [57] H. T. Odum and W. C. Allee, A note on the stable point of populations showing both intraspecific cooperation and disoperation, Ecology, 35 (1954), 95-97. doi: 10.2307/1931412. [58] V. Padrón and M. C. Trevisan, Effect of aggregating behavior on population recovery on a set of habitat islands, Mathematical Biosciences, 165 (2000), 63-78. doi: 10.1016/S0025-5564(00)00005-5. [59] A. Potapov, E. Merrill and M. A. Lewis, Wildlife disease elimination and density dependence, Proceedings of the Royal Society - Biological Sciences, 279 (2012), 3139-3145. doi: 10.1098/rspb.2012.0520. [60] R. Ricklefs and G. Miller, Ecology, Williams and Wilkins Co., Inc., New York, 4th ed., 2000. [61] B.-E. Sther, T. Ringsby and E. Rskaft, Life history variation, population processes and priorities in species conservation: towards a reunion of research paradigms, Oikos, 77 (1996), 217-226. doi: 10.2307/3546060. [62] S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theoretical Population Biology, 64 (2003), 201-209. doi: 10.1016/S0040-5809(03)00072-8. [63] J. Shi and R. Shivaji, Persistence in reaction diffusion models with weak Allee effect, Journal of Mathematical Biology, 52 (2006), 807-829. doi: 10.1007/s00285-006-0373-7. [64] M. Sieber and F. M. Hilker, The hydra effect in predator-prey models, Journal of Mathematical Biology, 64 (2012), 341-360. doi: 10.1007/s00285-011-0416-6. [65] B. K. Singh, J. Chattopadhyay and S. Sinha, The role of virus infection in a simple phytoplankton zooplankton system, Journal of Theoretical Biology, 231 (2004), 153-166. doi: 10.1016/j.jtbi.2004.06.010. [66] P. Stephens and W. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation, Trends in Ecology & Evolution, 14 (1999), 401-405. doi: 10.1016/S0169-5347(99)01684-5. [67] P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect? Oikos, 87 (1999), 185-190. doi: 10.2307/3547011. [68] A. Stoner and M. Ray-Culp, Evidence for Allee effects in an over-harvested marine gastropod: Density dependent mating and egg production, Marine Ecology Progress Series, 202 (2000), 297-302. doi: 10.3354/meps202297. [69] M. Su and C. Hui, An ecoepidemiological system with infected predator, in 3rd International Conference on Biomedical Engineering and Informatics (BMET 2010), 6 (2010), 2390-2393. doi: 10.1109/BMEI.2010.5639698. [70] M. Su, C. Hui, Y. Zhang and Z. Li, Spatiotemporal dynamics of the epidemic transmission in a predator-prey syatem, Bulletin of Mathematical Biology, 70 (2008), 2195-2210. doi: 10.1007/s11538-008-9340-3. [71] C. Taylor and A. Hastings, Allee effects in biological invasions, Ecology Letters, 8 (2005), 895-908. doi: 10.1111/j.1461-0248.2005.00787.x. [72] H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, Journal of Mathematical Biology, 30 (1992), 755-763. doi: 10.1007/BF00173267. [73] H. R. Thieme, T. Dhirasakdanon, Z. Han and R. Trevino, Species decline and extinction: Synergy of infectious diseases and Allee effect? Journal of Biological Dynamics, 3 (2009), 305-323. doi: 10.1080/17513750802376313. [74] E. Venturino, Epidemics in predator-prey models: Disease in the prey, In Arino, O., Axelrod, D., Kimmel, M., Langlais, M. (Eds.), Mathematical Population Dynamics: Analysis of Heterogeneity, 1 (1995), 381-393. doi: 10.1093/imammb19.3.185. [75] E. Venturino, Epidemics in predator-prey models: Disease in the predators, IMA Journal of Mathematics Applied in Medicine and Biology, 19 (2002), 185-205. doi: 10.1093/imammb19.3.185. [76] G. A. K. v. Voorn, L. Hemerik, M. P. Boer and B. W. Kooi, Heteroclinic orbits indicate overexploitaion in predator-prey systems with a strong Allee effect, Mathematical Biosciences, 209 (2007), 451-469. doi: 10.1016/j.mbs.2007.02.006. [77] J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey, Journal of Mathematical Biology, 62 (2011), 291-331. doi: 10.1007/s00285-010-0332-1. [78] M. Wang, M. Kot and M. Neubert, Integrodifference equations, Allee effects, and invasions, Journal of Mathematical Biology, 44 (2002), 150-168. doi: 10.1007/s002850100116. [79] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, 2, Springer, New York, 1990. doi: 10.1007/978-1-4757-4067-7. [80] Y. Xiao and L. Chen, Modelling and analysis of a predator-prey model with disease in the prey, Mathematical Biosciences, 171 (2001), 59-82. doi: 10.1016/S0025-5564(01)00049-9. [81] A. A. Yakubu, Allee effects in a discrete-time SIS epidemic model with infected newborns, Journal of Difference Equations and Applications, 13 (2007), 341-356. doi: 10.1080/10236190601079076. [82] S. R. Zhou, C. Z. Liu and G. Wang, The competitive dynamics of metapopulation subject to the Allee-like effect, Theoretical Population Biology, 65 (2004), 29-37. doi: 10.1016/j.tpb.2003.08.002.

show all references

##### References:
 [1] W. C. Allee, Animal Aggregations. A Study in General Sociology, University of Chicago Press, Chicago, 1931. doi: 10.5962/bhl.title.7313. [2] L. H. Alvarez, Optimal harvesting under stochastic fluctuations and critical depensation, Mathematical Biosciences, 152 (1998), 63-85. doi: 10.1016/S0025-5564(98)10018-4. [3] P. Amarasekare, Interactions between local dynamics and dispersal: Insights from single species models, Theoretical Population Biology, 53 (1998), 44-59. doi: 10.1006/tpbi.1997.1340. [4] E. Angulo, G. W. Roemer, L. Berec, J. Gascoigen and F. Courchamp, Double Allee effects and extinction in the island fox, Conservation Biology, 21 (2007), 1082-1091. doi: 10.1111/j.1523-1739.2007.00721.x. [5] N. Bairagi, P. K. Roy and J. Chattopadhyay, Role of infection on the stability of a predator-prey system with several response functions - A comparative study, Journal of Theoretical Biology, 248 (2007), 10-25. doi: 10.1016/j.jtbi.2007.05.005. [6] M. Begon, M. Bennett, R. G. Bowers, N. P. French, S. M. Hazel and J. Turner, A clarification of transmission terms in host-microparasite models: Numbers, densities and areas, Epidemiology and Infection, 129 (2002), 147-153. doi: 10.1017/S0950268802007148. [7] E. Beltrami and T. O. Carroll, Modelling the role of viral disease in recurrent phytoplankton blooms, Journal of Mathematical Biology, 32 (1994), 857-863. doi: 10.1007/BF00168802. [8] E. Beretta and Y. Kuang, Modelling and analysis of a marine bacteriophage infection, Mathematical Biosciences, 149 (1998), 57-76. doi: 10.1016/S0025-5564(97)10015-3. [9] F. S. Berezovskaya, B. Song and C. Castillo-Chavez, Role of prey dispersal and refuges on predator-prey dynamics, SIAM Journal on Applied Mathematics, 70 (2010), 1821-1839. doi: 10.1137/080730603. [10] G. Birkhoff and G. C. Rota, Ordinary Differential Equations, Massachusetts, Boston, 1982. [11] D. S. Boukal and L. Berec, Single-species Models of the Allee effect: Extinction boundaries, sex ratios and mate encounters, Journal of Theoretical Biology, 218 (2002), 375-394. doi: 10.1006/jtbi.2002.3084. [12] R. Burrows, H. Hofer and M. L. East, Population dynamics, intervention and survival in African wild dogs (Lycaon pictus), Proceedings of the Royal Society B: Biological Sciences, 262 (1995), 235-245. doi: 10.1098/rspb.1995.0201. [13] J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Analysis, 36 (1999), 747-766. doi: 10.1016/S0362-546X(98)00126-6. [14] J. Chattopadhyay and S. Pal, Viral infection on phytoplankton-zooplankton system-a mathematical model, Ecological Modelling, 151 (2002), 15-28. doi: 10.1016/S0304-3800(01)00415-X. [15] J. Chattopadhyay, R. Sarkar, M. E. Fritzche-Hoballah, T. Turlings and L. Bersier, Parasitoids may determine plant fitness - A mathematical model based on experimental data, Journal of Theoretical Biology, 212 (2001), 295-302. doi: 10.1006/jtbi.2001.2374. [16] J. Chattopadhyay, P. Srinivasu and N. Bairagi, Pelicans at risk in Salton Sea-an eco-epidemiological model-II, Ecological Modelling, 167 (2003), 199-211. doi: 10.1016/S0304-3800(03)00187-X. [17] D. L. Clifford, J. A. K. Mazet, E. J. Dubovi, D. K. Garcelon, T. J. Coonan, P. A. Conrad and L. Munson, Pathogen exposure in endangered island fox (Urocyon littoralis) populations: Implications for conservation management, Biological Conservation, 131 (2006), 230-243. doi: 10.1016/j.biocon.2006.04.029. [18] F. Courchamp, L. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, Oxford, 2008. doi: 10.1093/acprof:oso/9780198570301.001.0001. [19] F. Courchamp, T. Clutton-Brock and B. Grenfell, Inverse density dependence and the Allee effect, Trends in Ecology & Evolution, 14 (1999), 405-410. doi: 10.1016/S0169-5347(99)01683-3. [20] F. Courchamp, T. Clutton-Brock and B. Grenfell, Multipack dynamics and the Allee effect in the African wild dog, Lycaon pictus, Animal Conservation, 3 (2000), 277-285. doi: 10.1017/S1367943000001001. [21] F. Courchamp, B. Grenfell and T. Clutton-Brock, Impact of natural enemies on obligately cooperatively breeders, Oikos, 91 (2000), 311-322. doi: 10.1034/j.1600-0706.2000.910212.x. [22] J. Cushing and J. Hudson, Evolutionary dynamics and strong Allee effects, Journal of Biological Dynamics, 6 (2012), 941-958. doi: 10.1080/17513758.2012.697196. [23] A. Deredec and F. Courchamp, Combined impacts of Allee effects and parasitism, Oikos, 112 (2006), 667-679. doi: 10.1111/j.0030-1299.2006.14243.x. [24] J. Drake, Allee effects and the risk of biological invasion, Risk Analysis, 24 (2004), 795-802. doi: 10.1111/j.0272-4332.2004.00479.x. [25] J. Ferdy, F. Austerlitz, J. Moret, P. Gouyon and B. Godelle, Pollinator-induced density dependence in deceptive species, Oikos, 87 (1999), 549-560. doi: 10.2307/3546819. [26] H. I. Freedman, A model of predator-prey dynamics as modified by the action of parasite, Mathematical Biosciences, 99 (1990), 143-155. doi: 10.1016/0025-5564(90)90001-F. [27] A. Friedman and A. A. Yakubu, Fatal disease and demographic allee effect: Population persistence and extinction, Journal of Biological Dynamics, 6 (2012), 495-508. doi: 10.1080/17513758.2011.630489. [28] J. C. Gascoigne and R. N. Lipccius, Allee effects driven by predation, Journal of Applied Ecology, 41 (2004), 801-810. doi: 10.1111/j.0021-8901.2004.00944.x. [29] M. Groom, Allee effects limit population viability of an annual plant, The American Naturalist, 151 (1998), 487-496. doi: 10.1086/286135. [30] Y. Gruntfest, R. Arditi and Y. Dombronsky, A fragmented population in a varying environment, Journal of Theoretical Biology, 185 (1997), 539-547. doi: 10.1006/jtbi.1996.0358. [31] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, 1983. [32] F. M. D. Gulland, The Impact of Infectious Diseases on Wild Animal Populations-A Review. In: Ecology of Infectious Diseases in Natural Populations, Cambridge University Press, Cambridge, 1995. [33] K. P. Hadeler and H. I. Freedman, Predator-prey populations with parasitic infection, Journal of Mathematical Biology, 27 (1989), 609-631. doi: 10.1007/BF00276947. [34] H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 499-653. doi: 10.1137/S0036144500371907. [35] H. W. Hethcote, W. Wang, L. Han and Z. Ma, A predator-prey model with infected prey, Theoretical Population Biology, 66 (2004), 259-268. doi: 10.1016/j.tpb.2004.06.010. [36] F. M. Hilker, Population collapse to extinction: The catastrophic combination of parasitism and Allee effect, Journal of Biological Dynamics, 4 (2010), 86-101. doi: 10.1080/17513750903026429. [37] F. M. Hilker, M. Langlais and H. Malchow, The allee effect and infectious diseases: Extinction, multistability, and the (dis-)appearance of oscillations, The American Naturalist, 173 (2009), 72-88. doi: 10.1086/593357. [38] F. M. Hilker, M. Langlais, S. V. Petrovskii and H. Malchow, A diffusive SI model with Allee effect and application to FIV, Mathematical Biosciences, 206 (2007), 61-80. doi: 10.1016/j.mbs.2005.10.003. [39] F. M. Hilker and K. Schmitz, Disease-induced stabilization of predator-prey oscillations, Journal of Theoretical Biology, 255 (2008), 299-306. doi: 10.1016/j.jtbi.2008.08.018. [40] C. Holling, Some characteristics of simple types of predation and parasitism, Canadian Entomologist, 91 (1959), 385-398. [41] V. Hutson and K. Schmitt, Permanence and the dynamics of biological systems, Mathematical Biosciences, 111 (1992), 1-71. doi: 10.1016/0025-5564(92)90078-B. [42] J. Jacobs, Cooperation, optimal density and low density thresholds: yet another modification of the logistic model, Oecologia, 64 (1984), 389-395. doi: 10.1007/BF00379138. [43] S. R. J. Jang, Discrete-time host-parasitoid models with Allee effects: Density dependence versus parasitism, Journal of Difference Equations and Applications, 17 (2011), 525-539. doi: 10.1080/10236190903146920. [44] S. R. J. Jang, Allee effects in a discrete-time host-parasitoid model, Journal of Difference Equations and Applications, 12 (2006), 165-181. doi: 10.1080/10236190500539238. [45] Y. Kang, Dynamics of A General Contest Competition Two Species Model Subject to Strong Allee Effects, Submitted to the Journal of Theoretical Population Biology, 2013. (Under revision). [46] Y. Kang, Scramble competitions can rescue endangered species subject to strong Allee effects, Mathematical Biosciences, 241 (2013), 75-87. doi: 10.1016/j.mbs.2012.09.002. [47] Y. Kang, A. R. Bhowmick, S. K. Sasmal and J. Chattopadhyay, Host-parasitoid systems with predation-driven Allee effects in host population, preprint. [48] Y. Kang and C. Castillo-Chavez, Multiscale analysis of compartment models with dispersal, Journal of Biological Dynamics, 6 (2012), 50-79. doi: 10.1080/17513758.2012.713125. [49] Y. Kang and C. Castillo-Chavez, A Simple Epidemiological Model for Populations in The Wild with Allee Effects and Disease Modified Fitness, Journal of Discrete and Continuous Dynamical Systems-B, 2013, (Accepted). [50] Y. Kang and N. Lanchier, Expansion or extinction: Deterministic and stochastic two-patch models with Allee effects, Journal of Mathematical Biology, 62 (2011), 925-973. doi: 10.1007/s00285-010-0359-3. [51] Y. Kang and L. Wedekin, Dynamics of a intraguild predation model with generalist or specialist predator, Journal of Mathematical Biology, 67 (2013), 1227-1259. doi: 10.1007/s00285-012-0584-z. [52] Y. Kang and A.-A. Yakubu, Weak Allee effects and species coexistence, Nonlinear Analysis: Real World Applications, 12 (2011), 3329-3345. doi: 10.1016/j.nonrwa.2011.05.031. [53] M. Kuussaari, I. Saccheri, M. Camara and I. Hanski, Allee effect and population dynamics in the Glanville fritillary butterfly, Oikos, 82 (1998), 384-392. doi: 10.2307/3546980. [54] B. Lamont, P. Klinkhamer and E. Witkowski, Population fragmentation may reduce fertility to zero in Banksia goodii-demonstration of the Allee effect, Oecologia, 94 (1993), 446-450. doi: 10.1007/BF00317122. [55] M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms, Theoretical Population Biology, 43 (1993), 141-158. doi: 10.1006/tpbi.1993.1007. [56] H. McCallum, N. Barlow and J. Hone, How should pathogen transmission be modelled? Trends in Ecology & Evolution, 16 (2001), 295-300. doi: 10.1016/S0169-5347(01)02144-9. [57] H. T. Odum and W. C. Allee, A note on the stable point of populations showing both intraspecific cooperation and disoperation, Ecology, 35 (1954), 95-97. doi: 10.2307/1931412. [58] V. Padrón and M. C. Trevisan, Effect of aggregating behavior on population recovery on a set of habitat islands, Mathematical Biosciences, 165 (2000), 63-78. doi: 10.1016/S0025-5564(00)00005-5. [59] A. Potapov, E. Merrill and M. A. Lewis, Wildlife disease elimination and density dependence, Proceedings of the Royal Society - Biological Sciences, 279 (2012), 3139-3145. doi: 10.1098/rspb.2012.0520. [60] R. Ricklefs and G. Miller, Ecology, Williams and Wilkins Co., Inc., New York, 4th ed., 2000. [61] B.-E. Sther, T. Ringsby and E. Rskaft, Life history variation, population processes and priorities in species conservation: towards a reunion of research paradigms, Oikos, 77 (1996), 217-226. doi: 10.2307/3546060. [62] S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theoretical Population Biology, 64 (2003), 201-209. doi: 10.1016/S0040-5809(03)00072-8. [63] J. Shi and R. Shivaji, Persistence in reaction diffusion models with weak Allee effect, Journal of Mathematical Biology, 52 (2006), 807-829. doi: 10.1007/s00285-006-0373-7. [64] M. Sieber and F. M. Hilker, The hydra effect in predator-prey models, Journal of Mathematical Biology, 64 (2012), 341-360. doi: 10.1007/s00285-011-0416-6. [65] B. K. Singh, J. Chattopadhyay and S. Sinha, The role of virus infection in a simple phytoplankton zooplankton system, Journal of Theoretical Biology, 231 (2004), 153-166. doi: 10.1016/j.jtbi.2004.06.010. [66] P. Stephens and W. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation, Trends in Ecology & Evolution, 14 (1999), 401-405. doi: 10.1016/S0169-5347(99)01684-5. [67] P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect? Oikos, 87 (1999), 185-190. doi: 10.2307/3547011. [68] A. Stoner and M. Ray-Culp, Evidence for Allee effects in an over-harvested marine gastropod: Density dependent mating and egg production, Marine Ecology Progress Series, 202 (2000), 297-302. doi: 10.3354/meps202297. [69] M. Su and C. Hui, An ecoepidemiological system with infected predator, in 3rd International Conference on Biomedical Engineering and Informatics (BMET 2010), 6 (2010), 2390-2393. doi: 10.1109/BMEI.2010.5639698. [70] M. Su, C. Hui, Y. Zhang and Z. Li, Spatiotemporal dynamics of the epidemic transmission in a predator-prey syatem, Bulletin of Mathematical Biology, 70 (2008), 2195-2210. doi: 10.1007/s11538-008-9340-3. [71] C. Taylor and A. Hastings, Allee effects in biological invasions, Ecology Letters, 8 (2005), 895-908. doi: 10.1111/j.1461-0248.2005.00787.x. [72] H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, Journal of Mathematical Biology, 30 (1992), 755-763. doi: 10.1007/BF00173267. [73] H. R. Thieme, T. Dhirasakdanon, Z. Han and R. Trevino, Species decline and extinction: Synergy of infectious diseases and Allee effect? Journal of Biological Dynamics, 3 (2009), 305-323. doi: 10.1080/17513750802376313. [74] E. Venturino, Epidemics in predator-prey models: Disease in the prey, In Arino, O., Axelrod, D., Kimmel, M., Langlais, M. (Eds.), Mathematical Population Dynamics: Analysis of Heterogeneity, 1 (1995), 381-393. doi: 10.1093/imammb19.3.185. [75] E. Venturino, Epidemics in predator-prey models: Disease in the predators, IMA Journal of Mathematics Applied in Medicine and Biology, 19 (2002), 185-205. doi: 10.1093/imammb19.3.185. [76] G. A. K. v. Voorn, L. Hemerik, M. P. Boer and B. W. Kooi, Heteroclinic orbits indicate overexploitaion in predator-prey systems with a strong Allee effect, Mathematical Biosciences, 209 (2007), 451-469. doi: 10.1016/j.mbs.2007.02.006. [77] J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey, Journal of Mathematical Biology, 62 (2011), 291-331. doi: 10.1007/s00285-010-0332-1. [78] M. Wang, M. Kot and M. Neubert, Integrodifference equations, Allee effects, and invasions, Journal of Mathematical Biology, 44 (2002), 150-168. doi: 10.1007/s002850100116. [79] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, 2, Springer, New York, 1990. doi: 10.1007/978-1-4757-4067-7. [80] Y. Xiao and L. Chen, Modelling and analysis of a predator-prey model with disease in the prey, Mathematical Biosciences, 171 (2001), 59-82. doi: 10.1016/S0025-5564(01)00049-9. [81] A. A. Yakubu, Allee effects in a discrete-time SIS epidemic model with infected newborns, Journal of Difference Equations and Applications, 13 (2007), 341-356. doi: 10.1080/10236190601079076. [82] S. R. Zhou, C. Z. Liu and G. Wang, The competitive dynamics of metapopulation subject to the Allee-like effect, Theoretical Population Biology, 65 (2004), 29-37. doi: 10.1016/j.tpb.2003.08.002.
 [1] Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295 [2] Jing Li, Zhen Jin, Gui-Quan Sun, Li-Peng Song. Pattern dynamics of a delayed eco-epidemiological model with disease in the predator. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1025-1042. doi: 10.3934/dcdss.2017054 [3] Lopo F. de Jesus, César M. Silva, Helder Vilarinho. Random perturbations of an eco-epidemiological model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 257-275. doi: 10.3934/dcdsb.2021040 [4] Wonlyul Ko, Inkyung Ahn. Pattern formation of a diffusive eco-epidemiological model with predator-prey interaction. Communications on Pure and Applied Analysis, 2018, 17 (2) : 375-389. doi: 10.3934/cpaa.2018021 [5] Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129 [6] Yun Kang, Carlos Castillo-Chávez. A simple epidemiological model for populations in the wild with Allee effects and disease-modified fitness. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 89-130. doi: 10.3934/dcdsb.2014.19.89 [7] Guohong Zhang, Xiaoli Wang. Extinction and coexistence of species for a diffusive intraguild predation model with B-D functional response. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3755-3786. doi: 10.3934/dcdsb.2018076 [8] J. Leonel Rocha, Abdel-Kaddous Taha, Danièle Fournier-Prunaret. Explosion birth and extinction: Double big bang bifurcations and Allee effect in Tsoularis-Wallace's growth models. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3131-3163. doi: 10.3934/dcdsb.2015.20.3131 [9] Nika Lazaryan, Hassan Sedaghat. Extinction and the Allee effect in an age structured Ricker population model with inter-stage interaction. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 731-747. doi: 10.3934/dcdsb.2018040 [10] Wisdom S. Avusuglo, Kenzu Abdella, Wenying Feng. Stability analysis on an economic epidemiological model with vaccination. Mathematical Biosciences & Engineering, 2017, 14 (4) : 975-999. doi: 10.3934/mbe.2017051 [11] Lizhi Fei, Xingwu Chen. Bifurcation and control of a predator-prey system with unfixed functional responses. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021292 [12] Yincui Yan, Wendi Wang. Global stability of a five-dimensional model with immune responses and delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 401-416. doi: 10.3934/dcdsb.2012.17.401 [13] Mustapha Ait Rami, Vahid S. Bokharaie, Oliver Mason, Fabian R. Wirth. Stability criteria for SIS epidemiological models under switching policies. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2865-2887. doi: 10.3934/dcdsb.2014.19.2865 [14] C. Connell McCluskey. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2009, 6 (3) : 603-610. doi: 10.3934/mbe.2009.6.603 [15] Jing-Jing Xiang, Juan Wang, Li-Ming Cai. Global stability of the dengue disease transmission models. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2217-2232. doi: 10.3934/dcdsb.2015.20.2217 [16] Radu Strugariu, Mircea D. Voisei, Constantin Zălinescu. Counter-examples in bi-duality, triality and tri-duality. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1453-1468. doi: 10.3934/dcds.2011.31.1453 [17] Mostafa Fazly, Mahmoud Hesaaraki. Periodic solutions for a semi-ratio-dependent predator-prey dynamical system with a class of functional responses on time scales. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 267-279. doi: 10.3934/dcdsb.2008.9.267 [18] Alina Macacu, Dominique J. Bicout. Effect of the epidemiological heterogeneity on the outbreak outcomes. Mathematical Biosciences & Engineering, 2017, 14 (3) : 735-754. doi: 10.3934/mbe.2017041 [19] Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Mathematical Biosciences & Engineering, 2013, 10 (2) : 345-367. doi: 10.3934/mbe.2013.10.345 [20] Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060

2018 Impact Factor: 1.313