2014, 11(4): 929-945. doi: 10.3934/mbe.2014.11.929

$R_0$ and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission

1. 

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba Meguro-ku, Tokyo 153-8914, Japan

2. 

Dipartimento di Mathematica, Università di Trento, 38050 Povo (Trento), Italy

Received  January 2013 Revised  May 2013 Published  March 2014

In this paper, we study an age-structured SIS epidemic model with periodicity and vertical transmission. We show that the spectral radius of the Fréchet derivative of a nonlinear integral operator plays the role of a threshold value for the global behavior of the model, that is, if the value is less than unity, then the disease-free steady state of the model is globally asymptotically stable, while if the value is greater than unity, then the model has a unique globally asymptotically stable endemic (nontrivial) periodic solution. We also show that the value can coincide with the well-know epidemiological threshold value, the basic reproduction number $\mathcal{R}_0$.
Citation: Toshikazu Kuniya, Mimmo Iannelli. $R_0$ and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission. Mathematical Biosciences & Engineering, 2014, 11 (4) : 929-945. doi: 10.3934/mbe.2014.11.929
References:
[1]

V. Andreasen, Instability in an SIR-model with age-dependent susceptibility,, in Mathematical Population Dynamics: Analysis of Heterogeneity, (1995), 3.   Google Scholar

[2]

N. Bacaër, Approximation of the basic reproduction number $R_{0}$ for vector-borne diseases with a periodic vector population,, Bull. Math. Biol., 69 (2007), 1067.  doi: 10.1007/s11538-006-9166-9.  Google Scholar

[3]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality,, J. Math. Biol., 53 (2006), 421.  doi: 10.1007/s00285-006-0015-0.  Google Scholar

[4]

S. N. Busenberg, M. Iannelli and H. R. Thieme, Global behavior of an age-structured epidemic model,, SIAM J. Math. Anal., 22 (1991), 1065.  doi: 10.1137/0522069.  Google Scholar

[5]

S. N. Busenberg, M. Iannelli and H. R. Thieme, Dynamics of an age structured epidemic model,, in Dynamical Systems, (1993), 1.   Google Scholar

[6]

S. N. Busenberg and K. Cooke, Vertically Transmitted Diseases,, Springer-Verlag, (1993).  doi: 10.1007/978-3-642-75301-5.  Google Scholar

[7]

Y. Cha, M. Iannelli and F. A. Milner, Stability change of an epidemic model,, Dynam. Syst. Appl., 9 (2000), 361.   Google Scholar

[8]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365.  doi: 10.1007/BF00178324.  Google Scholar

[9]

M. Iannelli, M. Y. Kim and E. J. Park, Asymptotic behavior for an SIS epidemic model and its approximation,, Nonlinear Anal., 35 (1999), 797.  doi: 10.1016/S0362-546X(97)00597-X.  Google Scholar

[10]

H. Inaba, Threshold and stability results for an age-structured epidemic model,, J. Math. Biol., 28 (1990), 411.  doi: 10.1007/BF00178326.  Google Scholar

[11]

H. Inaba, Mathematical analysis of an age-structured SIR epidemic model with vertical transmission,, Discrete Contin. Dyn. Syst., 6 (2006), 69.  doi: 10.3934/dcdsb.2006.6.69.  Google Scholar

[12]

H. Inaba, On a new perspective of the basic reproduction number in heterogeneous environments,, J. Math. Biol., 65 (2012), 309.  doi: 10.1007/s00285-011-0463-z.  Google Scholar

[13]

T. Kuniya and H. Inaba, Endemic threshold results for an age-structured SIS epidemic model with periodic parameters,, J. Math. Anal. Appl., 402 (2013), 477.  doi: 10.1016/j.jmaa.2013.01.044.  Google Scholar

[14]

M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space,, Amer. Math. Soc. Translation, 1950 (1950).   Google Scholar

[15]

M. Langlais and S. N. Busenberg, Global behaviour in age structured S.I.S. models with seasonal periodicities and vertical transmission,, J. Math. Anal. Appl., 213 (1997), 511.  doi: 10.1006/jmaa.1997.5554.  Google Scholar

[16]

Y. Nakata and T. Kuniya, Global dynamics of a class of SEIRS epidemic models in a periodic environment,, J. Math. Anal. Appl., 363 (2010), 230.  doi: 10.1016/j.jmaa.2009.08.027.  Google Scholar

[17]

H. R. Thieme, Stability change of the endemic equilibrium in age-structured models for the spread of S-I-R type infectious diseases,, in Differential Equations Models in Biology, 92 (1991), 139.  doi: 10.1007/978-3-642-45692-3_10.  Google Scholar

[18]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity,, SIAM J. Appl. Math., 70 (2009), 188.  doi: 10.1137/080732870.  Google Scholar

[19]

W. Wang and X. Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, J. Dyn. Diff. Equat., 20 (2008), 699.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[20]

K. Yosida, Functional Analysis,, $6^{th}$ edition, (1980).   Google Scholar

[21]

F. Zhang and X. Q. Zhao, A periodic epidemic model in a patchy environment,, J. Math. Anal. Appl., 325 (2007), 496.  doi: 10.1016/j.jmaa.2006.01.085.  Google Scholar

show all references

References:
[1]

V. Andreasen, Instability in an SIR-model with age-dependent susceptibility,, in Mathematical Population Dynamics: Analysis of Heterogeneity, (1995), 3.   Google Scholar

[2]

N. Bacaër, Approximation of the basic reproduction number $R_{0}$ for vector-borne diseases with a periodic vector population,, Bull. Math. Biol., 69 (2007), 1067.  doi: 10.1007/s11538-006-9166-9.  Google Scholar

[3]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality,, J. Math. Biol., 53 (2006), 421.  doi: 10.1007/s00285-006-0015-0.  Google Scholar

[4]

S. N. Busenberg, M. Iannelli and H. R. Thieme, Global behavior of an age-structured epidemic model,, SIAM J. Math. Anal., 22 (1991), 1065.  doi: 10.1137/0522069.  Google Scholar

[5]

S. N. Busenberg, M. Iannelli and H. R. Thieme, Dynamics of an age structured epidemic model,, in Dynamical Systems, (1993), 1.   Google Scholar

[6]

S. N. Busenberg and K. Cooke, Vertically Transmitted Diseases,, Springer-Verlag, (1993).  doi: 10.1007/978-3-642-75301-5.  Google Scholar

[7]

Y. Cha, M. Iannelli and F. A. Milner, Stability change of an epidemic model,, Dynam. Syst. Appl., 9 (2000), 361.   Google Scholar

[8]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365.  doi: 10.1007/BF00178324.  Google Scholar

[9]

M. Iannelli, M. Y. Kim and E. J. Park, Asymptotic behavior for an SIS epidemic model and its approximation,, Nonlinear Anal., 35 (1999), 797.  doi: 10.1016/S0362-546X(97)00597-X.  Google Scholar

[10]

H. Inaba, Threshold and stability results for an age-structured epidemic model,, J. Math. Biol., 28 (1990), 411.  doi: 10.1007/BF00178326.  Google Scholar

[11]

H. Inaba, Mathematical analysis of an age-structured SIR epidemic model with vertical transmission,, Discrete Contin. Dyn. Syst., 6 (2006), 69.  doi: 10.3934/dcdsb.2006.6.69.  Google Scholar

[12]

H. Inaba, On a new perspective of the basic reproduction number in heterogeneous environments,, J. Math. Biol., 65 (2012), 309.  doi: 10.1007/s00285-011-0463-z.  Google Scholar

[13]

T. Kuniya and H. Inaba, Endemic threshold results for an age-structured SIS epidemic model with periodic parameters,, J. Math. Anal. Appl., 402 (2013), 477.  doi: 10.1016/j.jmaa.2013.01.044.  Google Scholar

[14]

M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space,, Amer. Math. Soc. Translation, 1950 (1950).   Google Scholar

[15]

M. Langlais and S. N. Busenberg, Global behaviour in age structured S.I.S. models with seasonal periodicities and vertical transmission,, J. Math. Anal. Appl., 213 (1997), 511.  doi: 10.1006/jmaa.1997.5554.  Google Scholar

[16]

Y. Nakata and T. Kuniya, Global dynamics of a class of SEIRS epidemic models in a periodic environment,, J. Math. Anal. Appl., 363 (2010), 230.  doi: 10.1016/j.jmaa.2009.08.027.  Google Scholar

[17]

H. R. Thieme, Stability change of the endemic equilibrium in age-structured models for the spread of S-I-R type infectious diseases,, in Differential Equations Models in Biology, 92 (1991), 139.  doi: 10.1007/978-3-642-45692-3_10.  Google Scholar

[18]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity,, SIAM J. Appl. Math., 70 (2009), 188.  doi: 10.1137/080732870.  Google Scholar

[19]

W. Wang and X. Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, J. Dyn. Diff. Equat., 20 (2008), 699.  doi: 10.1007/s10884-008-9111-8.  Google Scholar

[20]

K. Yosida, Functional Analysis,, $6^{th}$ edition, (1980).   Google Scholar

[21]

F. Zhang and X. Q. Zhao, A periodic epidemic model in a patchy environment,, J. Math. Anal. Appl., 325 (2007), 496.  doi: 10.1016/j.jmaa.2006.01.085.  Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[3]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[4]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[5]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[6]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[7]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[8]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[9]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[12]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[13]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[14]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[15]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[16]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[17]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[18]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[19]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[20]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]