\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

$R_0$ and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission

Abstract Related Papers Cited by
  • In this paper, we study an age-structured SIS epidemic model with periodicity and vertical transmission. We show that the spectral radius of the Fréchet derivative of a nonlinear integral operator plays the role of a threshold value for the global behavior of the model, that is, if the value is less than unity, then the disease-free steady state of the model is globally asymptotically stable, while if the value is greater than unity, then the model has a unique globally asymptotically stable endemic (nontrivial) periodic solution. We also show that the value can coincide with the well-know epidemiological threshold value, the basic reproduction number $\mathcal{R}_0$.
    Mathematics Subject Classification: Primary: 92D30, 35Q92; Secondary: 45P05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. Andreasen, Instability in an SIR-model with age-dependent susceptibility, in Mathematical Population Dynamics: Analysis of Heterogeneity, Theory of Epidemics (eds. O. Arino, D. Axelrod, M. Kimmel and M. Langlais), Wuerz Publ., (1995), 3-14.

    [2]

    N. Bacaër, Approximation of the basic reproduction number $R_{0}$ for vector-borne diseases with a periodic vector population, Bull. Math. Biol., 69 (2007), 1067-1091.doi: 10.1007/s11538-006-9166-9.

    [3]

    N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436.doi: 10.1007/s00285-006-0015-0.

    [4]

    S. N. Busenberg, M. Iannelli and H. R. Thieme, Global behavior of an age-structured epidemic model, SIAM J. Math. Anal., 22 (1991), 1065-1080.doi: 10.1137/0522069.

    [5]

    S. N. Busenberg, M. Iannelli and H. R. Thieme, Dynamics of an age structured epidemic model, in Dynamical Systems, World Scientific, (1993), 1-19.

    [6]

    S. N. Busenberg and K. Cooke, Vertically Transmitted Diseases, Springer-Verlag, Berlin-New York, 1993.doi: 10.1007/978-3-642-75301-5.

    [7]

    Y. Cha, M. Iannelli and F. A. Milner, Stability change of an epidemic model, Dynam. Syst. Appl., 9 (2000), 361-376.

    [8]

    O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.doi: 10.1007/BF00178324.

    [9]

    M. Iannelli, M. Y. Kim and E. J. Park, Asymptotic behavior for an SIS epidemic model and its approximation, Nonlinear Anal., 35 (1999), 797-814.doi: 10.1016/S0362-546X(97)00597-X.

    [10]

    H. Inaba, Threshold and stability results for an age-structured epidemic model, J. Math. Biol., 28 (1990), 411-434.doi: 10.1007/BF00178326.

    [11]

    H. Inaba, Mathematical analysis of an age-structured SIR epidemic model with vertical transmission, Discrete Contin. Dyn. Syst., Ser. B, 6 (2006), 69-96.doi: 10.3934/dcdsb.2006.6.69.

    [12]

    H. Inaba, On a new perspective of the basic reproduction number in heterogeneous environments, J. Math. Biol., 65 (2012), 309-348.doi: 10.1007/s00285-011-0463-z.

    [13]

    T. Kuniya and H. Inaba, Endemic threshold results for an age-structured SIS epidemic model with periodic parameters, J. Math. Anal. Appl., 402 (2013), 477-492.doi: 10.1016/j.jmaa.2013.01.044.

    [14]

    M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Translation, 1950 (1950), 128pp.

    [15]

    M. Langlais and S. N. Busenberg, Global behaviour in age structured S.I.S. models with seasonal periodicities and vertical transmission, J. Math. Anal. Appl., 213 (1997), 511-533.doi: 10.1006/jmaa.1997.5554.

    [16]

    Y. Nakata and T. Kuniya, Global dynamics of a class of SEIRS epidemic models in a periodic environment, J. Math. Anal. Appl., 363 (2010), 230-237.doi: 10.1016/j.jmaa.2009.08.027.

    [17]

    H. R. Thieme, Stability change of the endemic equilibrium in age-structured models for the spread of S-I-R type infectious diseases, in Differential Equations Models in Biology, Epidemiology and Ecology (eds. S. Busenberg and M. Martelli), Springer, 92 (1991), 139-158.doi: 10.1007/978-3-642-45692-3_10.

    [18]

    H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188-211.doi: 10.1137/080732870.

    [19]

    W. Wang and X. Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equat., 20 (2008), 699-717.doi: 10.1007/s10884-008-9111-8.

    [20]

    K. Yosida, Functional Analysis, $6^{th}$ edition, Springer-Verlag, Berlin-New York, 1980.

    [21]

    F. Zhang and X. Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516.doi: 10.1016/j.jmaa.2006.01.085.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(79) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return