Citation: |
[1] |
R. F. Baggaley, G. P. Garnet and N. M. Ferguson, Modelling the Impact of Antiretroviral Use in Resource-Poor Settings, PLoS Medicine, 3 (2006), e124.doi: 10.1371/journal.pmed.0030124. |
[2] |
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic, New York, 1979. |
[3] |
C. P. Bhunu, W. Garira and Z. Mukandavire, Modeling HIV/AIDS and Tuberculosis coinfection, Bulletin of Mathematical Biology, 71 (2009), 1745-1780.doi: 10.1007/s11538-009-9423-9. |
[4] |
S. M. Blower and T. Chou, Modeling the emergence of the 'hot zones': Tuberculosis and the amplification dynamics of drug resistance, Nature Medicine, 10 (2004), 1111-1116.doi: 10.1038/nm1102. |
[5] |
S. M. Blower, P. M. Small and P. Hopewell, Control strategies for tuberculosis epidemics: New models for old problems, Science, 273 (1996), 497-500.doi: 10.1126/science.273.5274.497. |
[6] |
S. M. Blower, A. R. McLean, T. C. Porco, P. M. Small, P. C. Hopewell, M. A. Sanchez and A. R. Moss, The intrinsic transmission dynamics of tuberculosis epidemics, Nature Medicine, 1 (1995), 815-821.doi: 10.1038/nm0895-815. |
[7] |
S. M. Blower and J. L. Gerberding, Understanding, predicting and controlling the emergence of drug-resistant tuberculosis: A theoretical framework, Journal of Molecular Medicine, 76 (1998), 624-636.doi: 10.1007/s001090050260. |
[8] |
M. W. Borgdorff, New measurable indicator for tuberculosis case detection, Emerging Infectious Diseases, 10 (2004), 1523-1528.doi: 10.3201/eid1009.040349. |
[9] |
S. Borrell and S. Gagneoux, Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis, The International Journal of Tuberculosis and Lung Disease, 13 (2009), 1456-1466. |
[10] |
C. R. Braden, G. P. Morlock, C. L. Woodley, K. R. Johnson and A. C. Colombel et al., Simultaneous infection with multiple strains of Mycobacterium tuberculosis, Clinical Infectious Diseases, 33 (2001), e42-e47.doi: 10.1086/322635. |
[11] |
S. Bowong and J. Kurths, Modeling and analysis of the transmission dynamics of tuberculosis without and with seasonality, Nonlinear Dynamics, 67 (2012), 2027-2051.doi: 10.1007/s11071-011-0127-y. |
[12] |
CDC., Drug resistant tuberculosis among the homeless Boston, MMWR, 34 (1985), 429-431. |
[13] |
T. Cohen and M. Murray, Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness, Nature Medicine, 10 (2004), 1117-1121.doi: 10.1038/nm1110. |
[14] |
T. Cohen, C. Colijn, B. Finklea, A. Wright, M. Zignol, A. Pym and M. Murray, Are survey-based estimates of the burden of drug resistant TB too low? Insight from a simulation study, PLos ONE, 3 (2008), e2363.doi: 10.1371/journal.pone.0002363. |
[15] |
C. Colijin, T. Cohen, A. Ganesh and M. Murray, Spontaneous emergence of multiple drug resistance in Tuberculosis before and during therapy, PLos ONE, 6 (2011), e18327.doi: 10.1371/journal.pone.0018327. |
[16] |
C. Colijn, T. Cohen and M. Murray, Latent coeinfection and the maintenance of strain diversity, Bulletin of Mathematical Biology, 71 (2009), 247-263.doi: 10.1007/s11538-008-9361-y. |
[17] |
H. D. Costello, G. J. Caras and Snider DE Jr., Drug resistance among previously treated tuberculosis patients, a brief report. American Review of Respiratory Disease, 121 (1980), 313-316. |
[18] |
Dickman et al., Detection of multiple strains of Mycobacterium tuberculosis using MIRU-VNTR in patients with pulmonary tuberculosis in Kampala, Uganda. BMC Infectious Diseases, 10 (2010),349 http://www.biomedcentral.com/1471-2334/10/349. |
[19] |
C. Dye and M. A. Espinal, Will tuberculosis become resistant to all antibiotics? Proceedings of the Royal Society of London B, 268 (2001), 45-52.doi: 10.1098/rspb.2000.1328. |
[20] |
M. A. Espinal, The global situation of MDR-TB, Tuberculosis, 83 (2003), 44-51.doi: 10.1016/S1472-9792(02)00058-6. |
[21] |
L. Esteva and C. Vargas, Influence of vertical and mechanical transmission on the dynamics of dengue disease, Math. Biosc., 167 (2000), 51-64.doi: 10.1016/S0025-5564(00)00024-9. |
[22] |
Z. Feng, M. Ianelli and F. A. Milner, A two-strain Tuberculosis model with age of infection, SIAM Journal on Applied Mathematics, 62 (2002), 1634-1656.doi: 10.1137/S003613990038205X. |
[23] |
M. L. Garcia-Garcia et. al., Clinical consequences and transmissibility of drug-resistant tuberculosis in souther Mexico, Archives of Internal Medicine, 160 (2000), 630-636. |
[24] |
M. Gomes, A. Franco and G. Medley, The reinfection threshold promotes variability in tuberculosis epidemiology and vaccine efficacy, Proceedings of the Royal Society B, 271 (2004), 617-623.doi: 10.1098/rspb.2003.2606. |
[25] |
J. K. Hale, Ordinary Differential Equations, 2nd Ed. krieger, Basel, 1980. |
[26] |
W. H. Hethcote, The mathematcs of infectious diseases, SIAM Review, 42 (2000), 599-653.doi: 10.1137/S0036144500371907. |
[27] |
M. C.M. Jong , O. Diekmann and J. A. P. Heesterbbeek, How does transmission of infection depend on population size? in D. Mollison (Ed.), Epidemic Models: Their Structure and Relation to Data, Cambridge University, Cambridge, 5 (1994), p. 84. |
[28] |
Y. Liu, Z. Sun, G. Sun, Q. Zhong, L. Jinag, L. Zhou, Y. Qiao and Z. Jia, Modeling Transmission of Tuberculosis with MDR and Undetected Cases, Discrete Dynamics in Nature and Society, 2011.doi: 10.1155/2011/296905. |
[29] |
S. M. Moghadas, C. S. Bowman, G. Rost and J. Wu, Population-wide emergence of antiviral resistance during pandemic influenza, PLos ONE, 3 (2008), e1839.doi: 10.1371/journal.pone.0001839. |
[30] |
E. Nardell, B. McInnes, B. Thomas and S. Weidhaas, Exogenous reinfection with tuberculosis in a shelter for the homeless, The New England Journal of Medicine, 315 (1986), 1570-1575.doi: 10.1056/NEJM198612183152502. |
[31] |
D. Okuonghae and S. E. Omosigho, Analysis of a mathematical model for tuberculosis: What could be done to increase case detection, Journal of Theoretical Biology, 269 (2011), 31-45.doi: 10.1016/j.jtbi.2010.09.044. |
[32] |
D. J. Ordway, M. G. Sonnenberg, S. A. Donahue, J. T. Belisle and I. M. Orme, Drug-resistant strains of Mycobaterium tuberculosis exhibit a range of virulence for mice, Infection and Immunity, 63 (1995), 741-743. |
[33] |
S. M. Raimundo, H. M. Yang, E. Venturino and E. Massad, Modeling the emergence of HIV-1 drug-resistance resulting from antiretroviral therapy: Insights from theoretical and numerical studies, BioSystems, 108 (2012), 1-13.doi: 10.1016/j.biosystems.2011.11.009. |
[34] |
S. M. Raimundo, H. M. Yang, R. C. Bassanezi, M. A. C. Ferreira, The attracting basins and the assessment of the transmission coefficients for HIV and M. Tuberculosis infections among women inmates, Journal of Biological Systems, 10 (2002), 61-83. |
[35] |
S. M. Raimundo, A. B. Engel, H. M. Yang and R. C. Bassanezi, An approach to estimating the transmission coefficients for AIDS and for tuberculosis using mathematical models, Systems Analysis Modelling Simulation, 43 (2003), 423-442.doi: 10.1080/02329290290027175. |
[36] |
S. M. Raimundo, E. Massad and H. M. Yang, Modelling congenital transmission of Chagas'disease, Biosystems, 99 (2010), 215-222.doi: 10.1016/j.biosystems.2009.11.005. |
[37] |
H. Rinder, K. T. Mieskes and T. Loscher, Heteroesistance in Mycobacterium tuberculsosis, The International Journal of Tuberculosis and Lung Disease, 5 (2001), 339-354. |
[38] |
P. Rodrigues, M. G. M. Gomes and C. Rebelo, Drug resistance in tuberculosis - a reinfection model, Theoretical Population Biology, 71 (2007), 196-212.doi: 10.1016/j.tpb.2006.10.004. |
[39] |
R. Sergeev, C. Colijn and T. Cohen, Models to understand the popualtion-level impact of mixed strain M. tuberculosis infections, Journal of Theoretical Biology, 280 (2011), 88-100.doi: 10.1016/j.jtbi.2011.04.011. |
[40] |
O. Sharomi and A. B. Gumel, Dynamical analysis of a multi-strain model of HIV in the presence of antiretroviral drugs, Journal of Biological Dynamics, 2 (2008), 323-345.doi: 10.1080/17513750701775599. |
[41] |
P. M. Small, R. W. Shafer and P. C. Hopewell et al, Exogenous reinfection with multidrug-resistant Mycobacterium tuberculosis in patients with advanced HIV infection, The New England Journal of Medicine, 328 (1993), 1137-1144.doi: 10.1056/NEJM199304223281601. |
[42] |
DE Jr. Snider, G. D. Kelly, G. M. Cauthen, N. J. Thompson and J. O. Kilburn, Infection and disease among contacts of tuberculosis cases with drug resistant and drug susceptible bacilli, The American Review of Respiratory Disease, 132 (1985), 125-132. |
[43] |
I. H. Spicknall, B. Foxman, C. F. Marrs and J. N. S. Eisenberg, A modeling framework for the evolution and spread of antibiotic resistance: literature review and model categorization, Am J Epidemiol, 178 (2013), 508-520.doi: 10.1093/aje/kwt017. |
[44] |
L. Teixeira et al, Infection and disease among household contacts of patients with multidrug-resistant tuberculosis, The International Journal of Tuberculosis and Lung Disease, 5 (2001), 321-328. |
[45] |
2011/2012 Tuberculosis Global Facts, Progress WHO Global Tuberculosis Control Report, 2011, http://www.who.int/tb/publications/2011/factsheet_tb_2011.pdf (accessed in September, 2012). |
[46] |
World Health Organization, Anti-tuberculosis drug resistance in the world. Prevalence and trends, WHO/CDS/TB/2000/.278 The WHO/IUATLD Global Project on Anti-Tuberculosis Drug Resistance Surveillance. Report 2. World Health Organization, Geneva, Switzerland (2000). |
[47] |
http://www.who.int/mediacentre/factsheets/fs104/en/index.html, Tuberculosis, Fact sheet N. 104, March 2012. (accessed in September, 2012). |