Citation: |
[1] |
R. M. Anderson and R. M. May, Epidemiological parameters of HIV transmission, Nature, 333 (1988), 514-519. |
[2] |
B. Asquith and C. R. M. Bangham, Review. An introduction to lymphocyte and viral dynamics: The power and limitations of mathematical analysis, Proceedings of the Royal Society of London. Series B: Biological Sciences, 270 (2003), 1651-1657.doi: 10.1098/rspb.2003.2386. |
[3] |
J. Banasiak, E. K. Phongi and M. Lachowicz, A singularly perturbed sis model with age structure, Mathematical Biosciences and Engineering, 10 (2013), 499-521.doi: 10.3934/mbe.2013.10.499. |
[4] |
N. Bobko, Estabilidade de Lyapunov e propriedades globais para modelos de dinâmica viral, (2010). |
[5] |
S. Bonhoeffer, R. M. May, G. M. Shaw and M. A. Nowak, Virus dynamics and drug therapy, Proceedings of the National Academy of Sciences, 94 (1997), 6971-6976.doi: 10.1073/pnas.94.13.6971. |
[6] |
L. N. Cooper, Theory of an immune system retrovirus, Proceedings of the National Academy of Sciences, 83 (1986), 9159-9163.doi: 10.1073/pnas.83.23.9159. |
[7] |
M. L. B. M. F. E. S. Sumikawa, L. R. da Motta and O. da C. F. Junior, Manual Técnico Para O Diagnóstico da Infecção Pelo HIV, Ministério da Saúde, 2013. |
[8] |
N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, Journal of Differential Equations, 31 (1979), 53-98.doi: 10.1016/0022-0396(79)90152-9. |
[9] |
S. D. W. Frost and A. R. McLean, Germinal centre destruction as a major pathway of HIV pathogenesis, JAIDS Journal of Acquired Immune Deficiency Syndromes, 7 (1994), 236-244. |
[10] |
J. B. Gilmore, A. D. Kelleher, D. A. Cooper and J. M. Murray, Explaining the determinants of first phase HIV decay dynamics through the effects of stage-dependent drug action, PLoS computational biology, 9 (2013), e1002971, 12 pp.doi: 10.1371/journal.pcbi.1002971. |
[11] |
N. Gulzar and K. F. T. Copeland, Cd8+ T-cells: Function and response to HIV infection, Current HIV research, 2 (2004), 23-37.doi: 10.2174/1570162043485077. |
[12] |
D. D. Ho, A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard and M. Markowitz, et al., Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373 (1995), 123-126.doi: 10.1038/373123a0. |
[13] |
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998.doi: 10.1017/CBO9781139173179. |
[14] |
J. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods, vol. 114, Springer New York, 1996.doi: 10.1007/978-1-4612-3968-0. |
[15] |
D. Kirschner, Using mathematics to understand HIV immune dynamics, AMS notices, 43 (1996), 191-202. |
[16] |
A. Korobeinikov, Global properties of basic virus dynamics models, Bulletin of Mathematical Biology, 66 (2004), 879-883.doi: 10.1016/j.bulm.2004.02.001. |
[17] |
A. L. Lloyd, The dependence of viral parameter estimates on the assumed viral life cycle: Limitations of studies of viral load data, Proceedings of the Royal Society of London. Series B: Biological Sciences, 268 (2001), 847-854.doi: 10.1098/rspb.2000.1572. |
[18] |
J. M. McCune, M. B. Hanley, D. Cesar, R. Halvorsen, R. Hoh, D. Schmidt, E. Wieder, S. Deeks, S. Siler and R. Neese, et al., Factors influencing T-cell turnover in HIV-1 seropositive patients, Journal of Clinical Investigation, 105 (2000), R1-R8.doi: 10.1172/JCI8647. |
[19] |
M. L. Munier and A. D. Kelleher, Acutely dysregulated, chronically disabled by the enemy within: T-cell responses to HIV-1 infection, Immunology and cell biology, 85 (2006), 6-15.doi: 10.1038/sj.icb.7100015. |
[20] |
P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Mathematical Biosciences, 179 (2002), 73-94.doi: 10.1016/S0025-5564(02)00099-8. |
[21] |
M. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, 2000. |
[22] |
M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.doi: 10.1126/science.272.5258.74. |
[23] |
Joint United Nations Programme on HIV/AIDS (UNAIDS), Global Report: Unaids Report on the Global AIDS Epidemic 2012, (2012). |
[24] |
S. A. Orszag and C. M. Bender, Advanced Mathematical Methods for Scientists and Engineers, Mac Graw Hill, 1978. |
[25] |
D. H. Pastore, A Dinamica do HIV no Sistema Imunológico na Presença de Mutação, Ph.D. thesis, IMPA, 2005. |
[26] |
A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV infection of CD4+ T cells, Mathematical biosciences, 114 (1993), 81-125.doi: 10.1016/0025-5564(93)90043-A. |
[27] |
A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM review, 41 (1999), 3-44.doi: 10.1137/S0036144598335107. |
[28] |
T. C. Quinn, HIV viral load, The Hopkins HIV Report, 8 (1996), no. 3. |
[29] |
A. Rambaut, D. Posada, K. A. Crandall and E. C. Holmes, The causes and consequences of HIV evolution, Nature Reviews Genetics, 5 (2004), 52-61.doi: 10.1038/nrg1246. |
[30] |
D. L. Robertson, B. H. Hahn and P. M. Sharp, Recombination in AIDS viruses, Journal of molecular evolution, 40 (1995), 249-259.doi: 10.1007/BF00163230. |
[31] |
M. A. Sande and P. A. Volberding, et al., The Medical Management of AIDS, no. Ed. 4, WB Saunders, 1995. |
[32] |
N. Siewe, The Tikhonov Theorem in Multiscale Modelling: An Application to the SIRS Epidemic Model, Ph.D. thesis, AIMS, 2012. |
[33] |
V. Simon and D. D. Ho, HIV-1 dynamics in vivo: Implications for therapy, Nature Reviews Microbiology, 1 (2003), 181-190.doi: 10.1038/nrmicro772. |
[34] |
H. L. Smith and P. D. Leenheer, Virus dynamics: A global analysis, SIAM Journal on Applied Mathematics, 63 (2003), 1313-1327.doi: 10.1137/S0036139902406905. |
[35] |
M. Somasundaran and H. L. Robinson, Unexpectedly high levels of HIV-1 RNA and protein synthesis in a cytocidal infection, Science, 242 (1988), 1554-1557.doi: 10.1126/science.3201245. |
[36] |
M. O. Souza, Multiscale analysis for a vector-borne epidemic model, Journal of mathematical biology, 68 (2014), 1269-1293.doi: 10.1007/s00285-013-0666-6. |
[37] |
M. O Souza and J. P. Zubelli, Global stability for a class of virus models with cytotoxic T lymphocyte immune response and antigenic variation, Bull. Math. Biol., 73 (2011), 609-625.doi: 10.1007/s11538-010-9543-2. |
[38] |
M. A Stafford, L. Corey, Y. Cao, E. S. Daar, D. D. Ho and A. S. Perelson, Modeling plasma virus concentration during primary HIV infection, Journal of Theoretical Biology, 203 (2000), 285-301.doi: 10.1006/jtbi.2000.1076. |
[39] |
P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problems, Journal of differential equations, 92 (1991), 252-281.doi: 10.1016/0022-0396(91)90049-F. |
[40] |
A. N. Tikhonov, A. B. Vasileva and A. G. Sveshnikov, Differential Equations, Springer-Verlag Berlin, 1984. |
[41] |
A. B. Vasileva and V. F. Butuzov, Asimptoticheskie Metody v Teorii Singulyarnykh Vozmushchenij, Moskva: Vysshaya Shkola, 1990 (Russian). |
[42] |
X. Wang and X. Song, Global properties of a model of immune effector responses to viral infections, Advances in Complex Systems, 10 (2007), 495-503.doi: 10.1142/S0219525907001252. |
[43] |
W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Dover Publications, Inc., New York, 1987. |
[44] |
World Health Organization (WHO), Global Update on HIV Treatment 2013: Results, Impact and Opportunities, (2013). |