Citation: |
[1] |
A. M. Baker, et. al., Lysyl Oxidase Plays a Critical Role in Endothelial Cell Stimulation to Drive Tumor Angiogenesis, Cancer Research, 73 (2013), 583-594.doi: 10.1158/0008-5472.CAN-12-2447. |
[2] |
A. D'Onofrio, A general framework for modeling tumor-immune system competition and immuno-therapy, mathematical analysis and biomedical inferences, Physica D, 208 (2005), 220-235.doi: 10.1016/j.physd.2005.06.032. |
[3] |
G. P. Dunn, L. J. Old and R. D. Schreiber, The three E's of cancer immuno-editing, Annu. Rev. Immunol., 22 (2004), 329-360. |
[4] |
R. Eftimie, J. L. Bramson and D. J. Earn, Interactions between the immune systems and cancer: A brief review of non-spatial mathematical models, Bull. Math. Biol., 73 (2011), 2-32.doi: 10.1007/s11538-010-9526-3. |
[5] |
J. Erler, et. al., Lysyl oxidase is essential for hypoxia-induced metastasis, Nature, 440 (2006), 1222-1226.doi: 10.1038/nature04695. |
[6] |
R. Genesio, M. Tartaglia and A. Vicino, On the estimation of asymptotic stability regions: State of the art and new proposals, IEEE Transactions on Automatic Control, 30 (1985), 747-755.doi: 10.1109/TAC.1985.1104057. |
[7] |
W. Hahn, Stability of Motion, Springer Verlag, Heidelberg-Berlin, 1967. |
[8] |
T. Kailath, Linear Systems, Prentice-Hall Information and System Sciences Series. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980. |
[9] |
M. Krstić, I. Kanellakopoulos and P. V. Kokotović, Nonlinear and Adaptive Control Design, John Wiley and Sons, 1995. |
[10] |
V. A. Kuznetsov, Mathematical modeling of the development of dormant tumors and immune stimulation of their growth, Cybern. syst. Anal, 23 (1988), 556-564. |
[11] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol, 56 (1994), 295-321. |
[12] |
U. Ledzewicz, M. Faraji and H. Schaettler, Mathematical model of tumor-immune interactions under chemotherapy with immune boost, Discrete and Continuous Dynamical Systems, Series B, 18 (2013), 1031-1051.doi: 10.3934/dcdsb.2013.18.1031. |
[13] |
U. Ledzewicz, M. Naghneian and H. Schaettler, Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics, Journal of Mathematical Biology, 64 (2012), 557-577.doi: 10.1007/s00285-011-0424-6. |
[14] |
L. Norton and R. Simon, Growth curve of an experimental solid tumor following radiotherapy, J. of the National Cancer Institute, 58 (1977), 1735-1741. |
[15] |
L. Norton, A Goempertzian model of human breast cancer growth, Cancer Research, 48 (1988), 7067-7071. |
[16] |
K. Page and J. Uhr, Mathematical models of cancer dormancy, Leukemia and Lymphoma, 46 (2005), 313-327.doi: 10.1080/10428190400011625. |
[17] |
G. Phan et. al., Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma, PNAS, 100 (2003), 8372-8377. |
[18] |
S. Ratschan and Z. She, Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions, SIAM J. Control Optim., 48 (2010), 4377-4394.doi: 10.1137/090749955. |
[19] |
S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence and Robustness, Prentice-Hall, Advanced Reference Series (Engineering), 1989. |
[20] |
A. Scott, J. Wolchock and L. Old, Antibody therapy of cancer, Nature Reviews Cancer, 12 (2012), 278-287.doi: 10.1038/nrc3236. |
[21] |
N. V. Stepanova, Course of the immune reaction during the development of a malignant tumor, Biophysics, 24 (1980), 917-923. |
[22] |
T. Takayanagi, H. Kawamura and A. Ohuchi, Cellular automaton model of a tumor tissue consisting of tumor cells, cytoxic T lymphocytes (CTLs), and cytokine produced by CTLs, IPSJ Trans Math Model Appl., 47 (2006), 61-67. |
[23] |
A. Vannelli and M. Vidyasagar, Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems, Automatica, 21 (1985), 69-80.doi: 10.1016/0005-1098(85)90099-8. |
[24] |
K. P. Wilkie, A Review of Mathematical Models of Cancer-Immune Interactions in the Context of Tumor Dormancy, Systems Biology of Tumor Dormancy, Springer, New York, 2013. |
[25] |
V. I. Zubov, Mathematical Methods for the Study of Automatic Control Systems, Israel Jerusalem Academic Press, 1962. |
[26] |
V. I. Zubov, Methods of A.M. Lyapunov and Their Application, the Netherlands, Noordhoff, 1964. |
[27] |
Sydney International Workshop on Math Models of Tumor-Immune System Dynamics,, January 7-10, (2013),7.
|