• Previous Article
    Ebola outbreak in West Africa: real-time estimation and multiple-wave prediction
  • MBE Home
  • This Issue
  • Next Article
    Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering
2015, 12(5): 1037-1053. doi: 10.3934/mbe.2015.12.1037

Analysis of a cancer dormancy model and control of immuno-therapy

1. 

Department of Mathematics, Iowa State University, Ames, IA 50011, United States, United States

Received  July 2014 Revised  February 2015 Published  June 2015

The goal of this paper is to analyze a model of cancer-immune system interactions from [16], and to show how the introduction of control in this model can dramatically improve the hypothetical patient response and in effect prevent the cancer from growing. We examine all the equilibrium points of the model and classify them according to their stability properties. We identify an equilibrium point corresponding to a survivable amount of cancer cells which are exactly balanced by the immune response. This situation corresponds to cancer dormancy. By using Lyapunov stability theory we estimate the region of attraction of this equilibrium and propose two control laws which are able to stabilize the system effectively, improving the results of [16]. Ultimately, the analysis presented in this paper reveals that a slower, continuous introduction of antibodies over a short time scale, as opposed to mere inoculation, may lead to more efficient and safer treatments.
Citation: Ben Sheller, Domenico D'Alessandro. Analysis of a cancer dormancy model and control of immuno-therapy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1037-1053. doi: 10.3934/mbe.2015.12.1037
References:
[1]

A. M. Baker, et. al., Lysyl Oxidase Plays a Critical Role in Endothelial Cell Stimulation to Drive Tumor Angiogenesis,, Cancer Research, 73 (2013), 583.  doi: 10.1158/0008-5472.CAN-12-2447.  Google Scholar

[2]

A. D'Onofrio, A general framework for modeling tumor-immune system competition and immuno-therapy, mathematical analysis and biomedical inferences,, Physica D, 208 (2005), 220.  doi: 10.1016/j.physd.2005.06.032.  Google Scholar

[3]

G. P. Dunn, L. J. Old and R. D. Schreiber, The three E's of cancer immuno-editing,, Annu. Rev. Immunol., 22 (2004), 329.   Google Scholar

[4]

R. Eftimie, J. L. Bramson and D. J. Earn, Interactions between the immune systems and cancer: A brief review of non-spatial mathematical models,, Bull. Math. Biol., 73 (2011), 2.  doi: 10.1007/s11538-010-9526-3.  Google Scholar

[5]

J. Erler, et. al., Lysyl oxidase is essential for hypoxia-induced metastasis,, Nature, 440 (2006), 1222.  doi: 10.1038/nature04695.  Google Scholar

[6]

R. Genesio, M. Tartaglia and A. Vicino, On the estimation of asymptotic stability regions: State of the art and new proposals,, IEEE Transactions on Automatic Control, 30 (1985), 747.  doi: 10.1109/TAC.1985.1104057.  Google Scholar

[7]

W. Hahn, Stability of Motion,, Springer Verlag, (1967).   Google Scholar

[8]

T. Kailath, Linear Systems,, Prentice-Hall Information and System Sciences Series. Prentice-Hall, (1980).   Google Scholar

[9]

M. Krstić, I. Kanellakopoulos and P. V. Kokotović, Nonlinear and Adaptive Control Design,, John Wiley and Sons, (1995).   Google Scholar

[10]

V. A. Kuznetsov, Mathematical modeling of the development of dormant tumors and immune stimulation of their growth,, Cybern. syst. Anal, 23 (1988), 556.   Google Scholar

[11]

V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis,, Bull. Math. Biol, 56 (1994), 295.   Google Scholar

[12]

U. Ledzewicz, M. Faraji and H. Schaettler, Mathematical model of tumor-immune interactions under chemotherapy with immune boost,, Discrete and Continuous Dynamical Systems, 18 (2013), 1031.  doi: 10.3934/dcdsb.2013.18.1031.  Google Scholar

[13]

U. Ledzewicz, M. Naghneian and H. Schaettler, Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics,, Journal of Mathematical Biology, 64 (2012), 557.  doi: 10.1007/s00285-011-0424-6.  Google Scholar

[14]

L. Norton and R. Simon, Growth curve of an experimental solid tumor following radiotherapy,, J. of the National Cancer Institute, 58 (1977), 1735.   Google Scholar

[15]

L. Norton, A Goempertzian model of human breast cancer growth,, Cancer Research, 48 (1988), 7067.   Google Scholar

[16]

K. Page and J. Uhr, Mathematical models of cancer dormancy,, Leukemia and Lymphoma, 46 (2005), 313.  doi: 10.1080/10428190400011625.  Google Scholar

[17]

G. Phan et. al., Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma,, PNAS, 100 (2003), 8372.   Google Scholar

[18]

S. Ratschan and Z. She, Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions,, SIAM J. Control Optim., 48 (2010), 4377.  doi: 10.1137/090749955.  Google Scholar

[19]

S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence and Robustness,, Prentice-Hall, (1989).   Google Scholar

[20]

A. Scott, J. Wolchock and L. Old, Antibody therapy of cancer,, Nature Reviews Cancer, 12 (2012), 278.  doi: 10.1038/nrc3236.  Google Scholar

[21]

N. V. Stepanova, Course of the immune reaction during the development of a malignant tumor,, Biophysics, 24 (1980), 917.   Google Scholar

[22]

T. Takayanagi, H. Kawamura and A. Ohuchi, Cellular automaton model of a tumor tissue consisting of tumor cells, cytoxic T lymphocytes (CTLs), and cytokine produced by CTLs,, IPSJ Trans Math Model Appl., 47 (2006), 61.   Google Scholar

[23]

A. Vannelli and M. Vidyasagar, Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems,, Automatica, 21 (1985), 69.  doi: 10.1016/0005-1098(85)90099-8.  Google Scholar

[24]

K. P. Wilkie, A Review of Mathematical Models of Cancer-Immune Interactions in the Context of Tumor Dormancy,, Systems Biology of Tumor Dormancy, (2013).   Google Scholar

[25]

V. I. Zubov, Mathematical Methods for the Study of Automatic Control Systems,, Israel Jerusalem Academic Press, (1962).   Google Scholar

[26]

V. I. Zubov, Methods of A.M. Lyapunov and Their Application,, the Netherlands, (1964).   Google Scholar

[27]

, Sydney International Workshop on Math Models of Tumor-Immune System Dynamics,, January 7-10, (2013), 7.   Google Scholar

show all references

References:
[1]

A. M. Baker, et. al., Lysyl Oxidase Plays a Critical Role in Endothelial Cell Stimulation to Drive Tumor Angiogenesis,, Cancer Research, 73 (2013), 583.  doi: 10.1158/0008-5472.CAN-12-2447.  Google Scholar

[2]

A. D'Onofrio, A general framework for modeling tumor-immune system competition and immuno-therapy, mathematical analysis and biomedical inferences,, Physica D, 208 (2005), 220.  doi: 10.1016/j.physd.2005.06.032.  Google Scholar

[3]

G. P. Dunn, L. J. Old and R. D. Schreiber, The three E's of cancer immuno-editing,, Annu. Rev. Immunol., 22 (2004), 329.   Google Scholar

[4]

R. Eftimie, J. L. Bramson and D. J. Earn, Interactions between the immune systems and cancer: A brief review of non-spatial mathematical models,, Bull. Math. Biol., 73 (2011), 2.  doi: 10.1007/s11538-010-9526-3.  Google Scholar

[5]

J. Erler, et. al., Lysyl oxidase is essential for hypoxia-induced metastasis,, Nature, 440 (2006), 1222.  doi: 10.1038/nature04695.  Google Scholar

[6]

R. Genesio, M. Tartaglia and A. Vicino, On the estimation of asymptotic stability regions: State of the art and new proposals,, IEEE Transactions on Automatic Control, 30 (1985), 747.  doi: 10.1109/TAC.1985.1104057.  Google Scholar

[7]

W. Hahn, Stability of Motion,, Springer Verlag, (1967).   Google Scholar

[8]

T. Kailath, Linear Systems,, Prentice-Hall Information and System Sciences Series. Prentice-Hall, (1980).   Google Scholar

[9]

M. Krstić, I. Kanellakopoulos and P. V. Kokotović, Nonlinear and Adaptive Control Design,, John Wiley and Sons, (1995).   Google Scholar

[10]

V. A. Kuznetsov, Mathematical modeling of the development of dormant tumors and immune stimulation of their growth,, Cybern. syst. Anal, 23 (1988), 556.   Google Scholar

[11]

V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis,, Bull. Math. Biol, 56 (1994), 295.   Google Scholar

[12]

U. Ledzewicz, M. Faraji and H. Schaettler, Mathematical model of tumor-immune interactions under chemotherapy with immune boost,, Discrete and Continuous Dynamical Systems, 18 (2013), 1031.  doi: 10.3934/dcdsb.2013.18.1031.  Google Scholar

[13]

U. Ledzewicz, M. Naghneian and H. Schaettler, Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics,, Journal of Mathematical Biology, 64 (2012), 557.  doi: 10.1007/s00285-011-0424-6.  Google Scholar

[14]

L. Norton and R. Simon, Growth curve of an experimental solid tumor following radiotherapy,, J. of the National Cancer Institute, 58 (1977), 1735.   Google Scholar

[15]

L. Norton, A Goempertzian model of human breast cancer growth,, Cancer Research, 48 (1988), 7067.   Google Scholar

[16]

K. Page and J. Uhr, Mathematical models of cancer dormancy,, Leukemia and Lymphoma, 46 (2005), 313.  doi: 10.1080/10428190400011625.  Google Scholar

[17]

G. Phan et. al., Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma,, PNAS, 100 (2003), 8372.   Google Scholar

[18]

S. Ratschan and Z. She, Providing a basin of attraction to a target region of polynomial systems by computation of Lyapunov-like functions,, SIAM J. Control Optim., 48 (2010), 4377.  doi: 10.1137/090749955.  Google Scholar

[19]

S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence and Robustness,, Prentice-Hall, (1989).   Google Scholar

[20]

A. Scott, J. Wolchock and L. Old, Antibody therapy of cancer,, Nature Reviews Cancer, 12 (2012), 278.  doi: 10.1038/nrc3236.  Google Scholar

[21]

N. V. Stepanova, Course of the immune reaction during the development of a malignant tumor,, Biophysics, 24 (1980), 917.   Google Scholar

[22]

T. Takayanagi, H. Kawamura and A. Ohuchi, Cellular automaton model of a tumor tissue consisting of tumor cells, cytoxic T lymphocytes (CTLs), and cytokine produced by CTLs,, IPSJ Trans Math Model Appl., 47 (2006), 61.   Google Scholar

[23]

A. Vannelli and M. Vidyasagar, Maximal Lyapunov functions and domains of attraction for autonomous nonlinear systems,, Automatica, 21 (1985), 69.  doi: 10.1016/0005-1098(85)90099-8.  Google Scholar

[24]

K. P. Wilkie, A Review of Mathematical Models of Cancer-Immune Interactions in the Context of Tumor Dormancy,, Systems Biology of Tumor Dormancy, (2013).   Google Scholar

[25]

V. I. Zubov, Mathematical Methods for the Study of Automatic Control Systems,, Israel Jerusalem Academic Press, (1962).   Google Scholar

[26]

V. I. Zubov, Methods of A.M. Lyapunov and Their Application,, the Netherlands, (1964).   Google Scholar

[27]

, Sydney International Workshop on Math Models of Tumor-Immune System Dynamics,, January 7-10, (2013), 7.   Google Scholar

[1]

Harsh Vardhan Jain, Avner Friedman. Modeling prostate cancer response to continuous versus intermittent androgen ablation therapy. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 945-967. doi: 10.3934/dcdsb.2013.18.945

[2]

Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565

[3]

Avner Friedman, Xiulan Lai. Antagonism and negative side-effects in combination therapy for cancer. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2237-2250. doi: 10.3934/dcdsb.2019093

[4]

Avner Friedman, Xiulan Lai. Free boundary problems associated with cancer treatment by combination therapy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6825-6842. doi: 10.3934/dcds.2019233

[5]

Danthai Thongphiew, Vira Chankong, Fang-Fang Yin, Q. Jackie Wu. An on-line adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. Journal of Industrial & Management Optimization, 2008, 4 (3) : 453-475. doi: 10.3934/jimo.2008.4.453

[6]

Urszula Ledzewicz, Helen Moore. Optimal control applied to a generalized Michaelis-Menten model of CML therapy. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 331-346. doi: 10.3934/dcdsb.2018022

[7]

Alexander S. Bratus, Svetlana Yu. Kovalenko, Elena Fimmel. On viable therapy strategy for a mathematical spatial cancer model describing the dynamics of malignant and healthy cells. Mathematical Biosciences & Engineering, 2015, 12 (1) : 163-183. doi: 10.3934/mbe.2015.12.163

[8]

Marzena Dolbniak, Malgorzata Kardynska, Jaroslaw Smieja. Sensitivity of combined chemo-and antiangiogenic therapy results in different models describing cancer growth. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 145-160. doi: 10.3934/dcdsb.2018009

[9]

Yangjin Kim, Avner Friedman, Eugene Kashdan, Urszula Ledzewicz, Chae-Ok Yun. Application of ecological and mathematical theory to cancer: New challenges. Mathematical Biosciences & Engineering, 2015, 12 (6) : i-iv. doi: 10.3934/mbe.2015.12.6i

[10]

Jerzy Klamka, Helmut Maurer, Andrzej Swierniak. Local controllability and optimal control for\newline a model of combined anticancer therapy with control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 195-216. doi: 10.3934/mbe.2017013

[11]

Cristian Morales-Rodrigo. A therapy inactivating the tumor angiogenic factors. Mathematical Biosciences & Engineering, 2013, 10 (1) : 185-198. doi: 10.3934/mbe.2013.10.185

[12]

Shengqiang Liu, Lin Wang. Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences & Engineering, 2010, 7 (3) : 675-685. doi: 10.3934/mbe.2010.7.675

[13]

Amina Eladdadi, Noura Yousfi, Abdessamad Tridane. Preface: Special issue on cancer modeling, analysis and control. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : i-iii. doi: 10.3934/dcdsb.2013.18.4i

[14]

Manuel Delgado, Cristian Morales-Rodrigo, Antonio Suárez. Anti-angiogenic therapy based on the binding to receptors. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3871-3894. doi: 10.3934/dcds.2012.32.3871

[15]

Jianjun Paul Tian. Finite-time perturbations of dynamical systems and applications to tumor therapy. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 469-479. doi: 10.3934/dcdsb.2009.12.469

[16]

Rachid Ouifki, Gareth Witten. A model of HIV-1 infection with HAART therapy and intracellular delays. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 229-240. doi: 10.3934/dcdsb.2007.8.229

[17]

Elie Assémat, Marc Lapert, Dominique Sugny, Steffen J. Glaser. On the application of geometric optimal control theory to Nuclear Magnetic Resonance. Mathematical Control & Related Fields, 2013, 3 (4) : 375-396. doi: 10.3934/mcrf.2013.3.375

[18]

Erin N. Bodine, K. Lars Monia. A proton therapy model using discrete difference equations with an example of treating hepatocellular carcinoma. Mathematical Biosciences & Engineering, 2017, 14 (4) : 881-899. doi: 10.3934/mbe.2017047

[19]

Gesham Magombedze, Winston Garira, Eddie Mwenje. Modelling the immunopathogenesis of HIV-1 infection and the effect of multidrug therapy: The role of fusion inhibitors in HAART. Mathematical Biosciences & Engineering, 2008, 5 (3) : 485-504. doi: 10.3934/mbe.2008.5.485

[20]

Cameron J. Browne, Sergei S. Pilyugin. Minimizing $\mathcal R_0$ for in-host virus model with periodic combination antiviral therapy. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3315-3330. doi: 10.3934/dcdsb.2016099

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]