• Previous Article
    Global stability of a multi-group model with vaccination age, distributed delay and random perturbation
  • MBE Home
  • This Issue
  • Next Article
    Ebola outbreak in West Africa: real-time estimation and multiple-wave prediction
2015, 12(5): 1065-1081. doi: 10.3934/mbe.2015.12.1065

Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy

1. 

School of Mathematics and Statistics, Central South University, Changsha, 410083, China, China

Received  September 2014 Revised  January 2015 Published  June 2015

In this paper, we analyze a general predator-prey model with state feedback impulsive harvesting strategies in which the prey species displays a strong Allee effect. We firstly show the existence of order-$1$ heteroclinic cycle and order-$1$ positive periodic solutions by using the geometric theory of differential equations for the unperturbed system. Based on the theory of rotated vector fields, the order-$1$ positive periodic solutions and heteroclinic bifurcation are studied for the perturbed system. Finally, some numerical simulations are provided to illustrate our main results. All the results indicate that the harvesting rate should be maintained at a reasonable range to keep the sustainable development of ecological systems.
Citation: Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065
References:
[1]

W. C. Allee, Animal Aggregations: A Study in General Sociology,, University of Chicago Press, (1931). Google Scholar

[2]

L. S. Chen, Pest control and geometric theory of semicontinuous dynamical system,, Journal of Beihua University (Natural Science), 12 (2011), 1. doi: 10.3969/j.issn.1009-4822.2011.01.001. Google Scholar

[3]

L. L. Chen and Z. S. Lin, The effect of habitat destruction on metapopulations with the Allee-like effect: A study case of yancheng in Jiangsu province, China,, Ecol. Model., 213 (2008), 356. doi: 10.1016/j.ecolmodel.2007.12.016. Google Scholar

[4]

F. Courchamp, B. Grenfell and T. Clutton-Brock, Population dynamics of obligate cooperators,, Proc. R. Soc. Lond. B., 266 (1999), 557. doi: 10.1098/rspb.1999.0672. Google Scholar

[5]

M. G. Correigh, Habitat selection reduces extinction of populations subject to Allee effects,, Theor. Popul. Biol., 64 (2003), 1. doi: 10.1016/S0040-5809(03)00025-X. Google Scholar

[6]

C. J. Dai, M. Zhao and L. S. Chen, Homoclinic bifurcation in semi-continuous dynamic systems,, Int. J. Biomath., 5 (2012). doi: 10.1142/S1793524512500593. Google Scholar

[7]

H. I. Freedman, Deterministic Mathematical Models in Population Ecology,, Hifr Co, (1980). doi: 10.2307/3556198. Google Scholar

[8]

M. J. Groom, Allee effects limit population viability of an annual plant,, Amer. Naturalist, 151 (1998), 487. doi: 10.1086/286135. Google Scholar

[9]

H. J. Guo, L. S. Chen and X. Y. Song, Geometric properties of solution of a cylindrical dynamic system with impulsive state feedback control,, Nonlinear Anal. Hybrid Syst., 15 (2015), 98. doi: 10.1016/j.nahs.2014.08.002. Google Scholar

[10]

M. Z. Huang, J. X. Li, X. Y. Song and H. J. Guo, Modeling impulsive injections of insulin: Towards artificial pancreas,, SIAM J. Appl. Math., 72 (2012), 1524. doi: 10.1137/110860306. Google Scholar

[11]

M. Z. Huang, S. Z. Liu, X. Y. Song and L. S. Chen, Periodic solutions and homoclinic bifurcation of a predator-prey system with two types of harvesting,, Nonlinear Dynam., 73 (2013), 815. doi: 10.1007/s11071-013-0834-7. Google Scholar

[12]

M. Z. Huang and X. Y. Song, Modeling and qualitative analysis of diabetes therapies with state feedback control,, Int. J. Biomath., 7 (2014). doi: 10.1142/S1793524514500351. Google Scholar

[13]

M. Kuussaari, I. Saccheri, M. Camara and I. Hanski, Allee effect and population dynamics in the Glanville fritillary butterfly,, Oikos, 82 (1998), 384. doi: 10.2307/3546980. Google Scholar

[14]

Z. S. Lin and B. L. Li, The maximum sustainable yield of Allee dynamic system,, Ecol. Model., 154 (2002), 1. doi: 10.1016/S0304-3800(01)00479-3. Google Scholar

[15]

G. P. Pang, L. S. Chen, W. J. Xu and G. Fu, A stage structure pest management model with impulsive state feedback control,, Commun. Nonlinear Sci. Numer. Simulat., 23 (2015), 78. doi: 10.1016/j.cnsns.2014.10.033. Google Scholar

[16]

Y. Tian, A. Kasperski, K. B. Sun and L. S. Chen, Theoretical approach to modelling and analysis of the bioprocess with product inhibition and impulse effect,, Biosystems, 104 (2011), 77. doi: 10.1016/j.biosystems.2011.01.003. Google Scholar

[17]

T. Y. Wang and L. S. Chen, Nonlinear analysis of a microbial pesticide model with impulsive state feedback control,, Nonlinear Dynam., 65 (2011), 1. doi: 10.1007/s11071-010-9828-x. Google Scholar

[18]

J. F. Wang, J. P. Shi and J. J. Wei, Predator-prey system with strong Allee effect in prey,, J. Math. Biol., 62 (2011), 291. doi: 10.1007/s00285-010-0332-1. Google Scholar

[19]

C. J. Wei and L. S. Chen, Heteroclinic bifurcation of a prey-predator fishery model with impulsive harvesting,, Int. J. Biomath., 6 (2013). doi: 10.1142/S1793524513500319. Google Scholar

[20]

C. J. Wei and L. S. Chen, Homoclinic bifurcation of prey-predator model with impulsive state feedback control,, Appl. Math. Comput., 237 (2014), 282. doi: 10.1016/j.amc.2014.03.124. Google Scholar

[21]

C. J. Wei and L. S. Chen, Periodic solution and heteroclinic bifurcation in a predator-prey system with Allee effect and impulsive harvesting,, Nonlinear Dynam., 76 (2014), 1109. doi: 10.1007/s11071-013-1194-z. Google Scholar

[22]

Y. Q. Ye, Limit Cycle Theory,, Shanghai Science and Technology Press, (1984). Google Scholar

[23]

L. C. Zhao, L. S. Chen and Q. L. Zhang, The geometrical analysis of a predator-prey model with two state impulses,, Math. Biosci., 238 (2012), 55. doi: 10.1016/j.mbs.2012.03.011. Google Scholar

[24]

S. R. Zhou, Y. F. Liu and G. Wang, The stability of predator-prey systems subject to the Allee effects,, Theor. Popul. Biol., 67 (2005), 23. doi: 10.1016/j.tpb.2004.06.007. Google Scholar

[25]

S. R. Zhou and G. Wang, Allee-like effects in metapopulation dynamics,, Math. Biosci., 189 (2004), 103. doi: 10.1016/j.mbs.2003.06.001. Google Scholar

show all references

References:
[1]

W. C. Allee, Animal Aggregations: A Study in General Sociology,, University of Chicago Press, (1931). Google Scholar

[2]

L. S. Chen, Pest control and geometric theory of semicontinuous dynamical system,, Journal of Beihua University (Natural Science), 12 (2011), 1. doi: 10.3969/j.issn.1009-4822.2011.01.001. Google Scholar

[3]

L. L. Chen and Z. S. Lin, The effect of habitat destruction on metapopulations with the Allee-like effect: A study case of yancheng in Jiangsu province, China,, Ecol. Model., 213 (2008), 356. doi: 10.1016/j.ecolmodel.2007.12.016. Google Scholar

[4]

F. Courchamp, B. Grenfell and T. Clutton-Brock, Population dynamics of obligate cooperators,, Proc. R. Soc. Lond. B., 266 (1999), 557. doi: 10.1098/rspb.1999.0672. Google Scholar

[5]

M. G. Correigh, Habitat selection reduces extinction of populations subject to Allee effects,, Theor. Popul. Biol., 64 (2003), 1. doi: 10.1016/S0040-5809(03)00025-X. Google Scholar

[6]

C. J. Dai, M. Zhao and L. S. Chen, Homoclinic bifurcation in semi-continuous dynamic systems,, Int. J. Biomath., 5 (2012). doi: 10.1142/S1793524512500593. Google Scholar

[7]

H. I. Freedman, Deterministic Mathematical Models in Population Ecology,, Hifr Co, (1980). doi: 10.2307/3556198. Google Scholar

[8]

M. J. Groom, Allee effects limit population viability of an annual plant,, Amer. Naturalist, 151 (1998), 487. doi: 10.1086/286135. Google Scholar

[9]

H. J. Guo, L. S. Chen and X. Y. Song, Geometric properties of solution of a cylindrical dynamic system with impulsive state feedback control,, Nonlinear Anal. Hybrid Syst., 15 (2015), 98. doi: 10.1016/j.nahs.2014.08.002. Google Scholar

[10]

M. Z. Huang, J. X. Li, X. Y. Song and H. J. Guo, Modeling impulsive injections of insulin: Towards artificial pancreas,, SIAM J. Appl. Math., 72 (2012), 1524. doi: 10.1137/110860306. Google Scholar

[11]

M. Z. Huang, S. Z. Liu, X. Y. Song and L. S. Chen, Periodic solutions and homoclinic bifurcation of a predator-prey system with two types of harvesting,, Nonlinear Dynam., 73 (2013), 815. doi: 10.1007/s11071-013-0834-7. Google Scholar

[12]

M. Z. Huang and X. Y. Song, Modeling and qualitative analysis of diabetes therapies with state feedback control,, Int. J. Biomath., 7 (2014). doi: 10.1142/S1793524514500351. Google Scholar

[13]

M. Kuussaari, I. Saccheri, M. Camara and I. Hanski, Allee effect and population dynamics in the Glanville fritillary butterfly,, Oikos, 82 (1998), 384. doi: 10.2307/3546980. Google Scholar

[14]

Z. S. Lin and B. L. Li, The maximum sustainable yield of Allee dynamic system,, Ecol. Model., 154 (2002), 1. doi: 10.1016/S0304-3800(01)00479-3. Google Scholar

[15]

G. P. Pang, L. S. Chen, W. J. Xu and G. Fu, A stage structure pest management model with impulsive state feedback control,, Commun. Nonlinear Sci. Numer. Simulat., 23 (2015), 78. doi: 10.1016/j.cnsns.2014.10.033. Google Scholar

[16]

Y. Tian, A. Kasperski, K. B. Sun and L. S. Chen, Theoretical approach to modelling and analysis of the bioprocess with product inhibition and impulse effect,, Biosystems, 104 (2011), 77. doi: 10.1016/j.biosystems.2011.01.003. Google Scholar

[17]

T. Y. Wang and L. S. Chen, Nonlinear analysis of a microbial pesticide model with impulsive state feedback control,, Nonlinear Dynam., 65 (2011), 1. doi: 10.1007/s11071-010-9828-x. Google Scholar

[18]

J. F. Wang, J. P. Shi and J. J. Wei, Predator-prey system with strong Allee effect in prey,, J. Math. Biol., 62 (2011), 291. doi: 10.1007/s00285-010-0332-1. Google Scholar

[19]

C. J. Wei and L. S. Chen, Heteroclinic bifurcation of a prey-predator fishery model with impulsive harvesting,, Int. J. Biomath., 6 (2013). doi: 10.1142/S1793524513500319. Google Scholar

[20]

C. J. Wei and L. S. Chen, Homoclinic bifurcation of prey-predator model with impulsive state feedback control,, Appl. Math. Comput., 237 (2014), 282. doi: 10.1016/j.amc.2014.03.124. Google Scholar

[21]

C. J. Wei and L. S. Chen, Periodic solution and heteroclinic bifurcation in a predator-prey system with Allee effect and impulsive harvesting,, Nonlinear Dynam., 76 (2014), 1109. doi: 10.1007/s11071-013-1194-z. Google Scholar

[22]

Y. Q. Ye, Limit Cycle Theory,, Shanghai Science and Technology Press, (1984). Google Scholar

[23]

L. C. Zhao, L. S. Chen and Q. L. Zhang, The geometrical analysis of a predator-prey model with two state impulses,, Math. Biosci., 238 (2012), 55. doi: 10.1016/j.mbs.2012.03.011. Google Scholar

[24]

S. R. Zhou, Y. F. Liu and G. Wang, The stability of predator-prey systems subject to the Allee effects,, Theor. Popul. Biol., 67 (2005), 23. doi: 10.1016/j.tpb.2004.06.007. Google Scholar

[25]

S. R. Zhou and G. Wang, Allee-like effects in metapopulation dynamics,, Math. Biosci., 189 (2004), 103. doi: 10.1016/j.mbs.2003.06.001. Google Scholar

[1]

Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607

[2]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[3]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[4]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[5]

Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Mathematical Biosciences & Engineering, 2013, 10 (2) : 345-367. doi: 10.3934/mbe.2013.10.345

[6]

Yujing Gao, Bingtuan Li. Dynamics of a ratio-dependent predator-prey system with a strong Allee effect. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2283-2313. doi: 10.3934/dcdsb.2013.18.2283

[7]

Yuying Liu, Yuxiao Guo, Junjie Wei. Dynamics in a diffusive predator-prey system with stage structure and strong allee effect. Communications on Pure & Applied Analysis, 2020, 19 (2) : 883-910. doi: 10.3934/cpaa.2020040

[8]

Xiaoling Li, Guangping Hu, Zhaosheng Feng, Dongliang Li. A periodic and diffusive predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 445-461. doi: 10.3934/dcdss.2017021

[9]

Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172

[10]

Moitri Sen, Malay Banerjee, Yasuhiro Takeuchi. Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 883-904. doi: 10.3934/mbe.2018040

[11]

Hanwu Liu, Lin Wang, Fengqin Zhang, Qiuying Li, Huakun Zhou. Dynamics of a predator-prey model with state-dependent carrying capacity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4739-4753. doi: 10.3934/dcdsb.2019028

[12]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[13]

Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 477-485. doi: 10.3934/cpaa.2018026

[14]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[15]

Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay. Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences & Engineering, 2014, 11 (4) : 877-918. doi: 10.3934/mbe.2014.11.877

[16]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[17]

Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203

[18]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

[19]

Jicai Huang, Yijun Gong, Shigui Ruan. Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2101-2121. doi: 10.3934/dcdsb.2013.18.2101

[20]

Qing Zhu, Huaqin Peng, Xiaoxiao Zheng, Huafeng Xiao. Bifurcation analysis of a stage-structured predator-prey model with prey refuge. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2195-2209. doi: 10.3934/dcdss.2019141

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]