2015, 12(5): 1127-1139. doi: 10.3934/mbe.2015.12.1127

Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen

1. 

Department of Mathematics, University of California, Irvine, 340 Rowland Hall, Bldg #400, Irvine, CA 92697-3875, United States

2. 

Electrical Engineering and Computer Science Department, Masdar Institute of Science and Technology, Masdar City, Abu Dhabi, United Arab Emirates

3. 

Department of Mathematics, University of Tennessee, 1403 Circle Dr, Ayres Hall 227, Knoxville, TN, 37996-2250, United States

Received  September 2014 Revised  March 2015 Published  June 2015

The inflammatory response aims to restore homeostasis by means of removing a biological stress, such as an invading bacterial pathogen. In cases of acute systemic inflammation, the possibility of collateral tissue damage arises, which leads to a necessary down-regulation of the response. A reduced ordinary differential equations (ODE) model of acute inflammation was presented and investigated in [10]. That system contains multiple positive and negative feedback loops and is a highly coupled and nonlinear ODE. The implementation of nonlinear model predictive control (NMPC) as a methodology for determining proper therapeutic intervention for in silico patients displaying complex inflammatory states was initially explored in [5]. Since direct measurements of the bacterial population and the magnitude of tissue damage/dysfunction are not readily available or biologically feasible, the need for robust state estimation was evident. In this present work, we present results on the nonlinear reachability of the underlying model, and then focus our attention on improving the predictability of the underlying model by coupling the NMPC with a particle filter. The results, though comparable to the initial exploratory study, show that robust state estimation of this highly nonlinear model can provide an alternative to prior updating strategies used when only partial access to the unmeasurable states of the system are available.
Citation: Gregory Zitelli, Seddik M. Djouadi, Judy D. Day. Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1127-1139. doi: 10.3934/mbe.2015.12.1127
References:
[1]

New Eng J Med, 369 (2013), 840-851. Google Scholar

[2]

Proceedings of the $52^{nd}$ IEEE Conference on Decision and Control, Florence, Italy, December 10-13 (2013), 3373-3378. Google Scholar

[3]

Springer-Verlag London, Ltd., London, 1999.  Google Scholar

[4]

American Mathematical Society, Providence, RI, 2007.  Google Scholar

[5]

Math Biosci Eng, 7 (2010), 739-763. doi: 10.3934/mbe.2010.7.739.  Google Scholar

[6]

J Exp Med, 174 (1991), 1209-1220. Google Scholar

[7]

Comput. Biol. Med., 38 (2008), 339-347. Google Scholar

[8]

9th International Symposium on Dynamics and Control of Process Systems, 9 (2010), 272-277. Google Scholar

[9]

Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4757-2101-0.  Google Scholar

[10]

J Theor Bio, 242 (2006), 220-236. doi: 10.1016/j.jtbi.2006.02.016.  Google Scholar

[11]

Wiley-Interscience, Hoboken, NJ, 2006. doi: 10.1002/0470045345.  Google Scholar

[12]

Oxford University Press, Oxford, 2008.  Google Scholar

[13]

Birkhäuser Boston, Inc, Boston, MA, 1992.  Google Scholar

show all references

References:
[1]

New Eng J Med, 369 (2013), 840-851. Google Scholar

[2]

Proceedings of the $52^{nd}$ IEEE Conference on Decision and Control, Florence, Italy, December 10-13 (2013), 3373-3378. Google Scholar

[3]

Springer-Verlag London, Ltd., London, 1999.  Google Scholar

[4]

American Mathematical Society, Providence, RI, 2007.  Google Scholar

[5]

Math Biosci Eng, 7 (2010), 739-763. doi: 10.3934/mbe.2010.7.739.  Google Scholar

[6]

J Exp Med, 174 (1991), 1209-1220. Google Scholar

[7]

Comput. Biol. Med., 38 (2008), 339-347. Google Scholar

[8]

9th International Symposium on Dynamics and Control of Process Systems, 9 (2010), 272-277. Google Scholar

[9]

Springer-Verlag, New York, 1990. doi: 10.1007/978-1-4757-2101-0.  Google Scholar

[10]

J Theor Bio, 242 (2006), 220-236. doi: 10.1016/j.jtbi.2006.02.016.  Google Scholar

[11]

Wiley-Interscience, Hoboken, NJ, 2006. doi: 10.1002/0470045345.  Google Scholar

[12]

Oxford University Press, Oxford, 2008.  Google Scholar

[13]

Birkhäuser Boston, Inc, Boston, MA, 1992.  Google Scholar

[1]

Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021009

[2]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[3]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[4]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[5]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[6]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[8]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[9]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[10]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[11]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[12]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[13]

Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019

[14]

Simone Fiori, Italo Cervigni, Mattia Ippoliti, Claudio Menotta. Synthetic nonlinear second-order oscillators on Riemannian manifolds and their numerical simulation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021088

[15]

Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021051

[16]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[17]

Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1825-1843. doi: 10.3934/jimo.2020048

[18]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[19]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[20]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]