\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Hybrid models of cell and tissue dynamics in tumor growth

Abstract Related Papers Cited by
  • Hybrid models of tumor growth, in which some regions are described at the cell level and others at the continuum level, provide a flexible description that allows alterations of cell-level properties and detailed descriptions of the interaction with the tumor environment, yet retain the computational advantages of continuum models where appropriate. We review aspects of the general approach and discuss applications to breast cancer and glioblastoma.
    Mathematics Subject Classification: Primary: 92C45, 92C50; Secondary: 92B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. C. Brahimi-Horn, J. Chiche and J. Pouysségur, Hypoxia signalling controls metabolic demand, Current opinion in cell biology, 19 (2007), 223-229.

    [2]

    F. Calvo and E. Sahai, Cell communication networks in cancer invasion, Curr Opin Cell Biol, 23 (2011), 621-629.

    [3]

    J. D. Cheng and L. M. Weiner, Tumors and their microenvironments: Tilling the soil Commentary re: A. M. Scott et al., A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer, Clin Cancer Res, 9 (2003), 1590-1595.

    [4]

    J. C. Dallon and H. G. Othmer, How cellular movement determines the collective force generated by the Dictyostelium discoideum slug, J. Theor. Biol., 231 (2004), 203-222.doi: 10.1016/j.jtbi.2004.06.015.

    [5]

    E. Dazert and M. N. Hall, mTOR signaling in disease, Current opinion in cell biology, 23 (2011), 744-755.

    [6]

    T. S. Deisboeck, Z. Wang, P. Macklin and V. Cristini, Multiscale cancer modeling, Ann. Rev. Biomed. Eng., 13 (2011), 117-155.

    [7]

    P. Friedl and S. Alexander, Cancer invasion and the microenvironment: Plasticity and reciprocity, Cell, 147 (2011), 992-1009.

    [8]

    P. Friedl and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer, Nature Reviews Molecular Cell Biology, 10 (2009), 445-457.

    [9]

    J. Galle, M. Loeffler and D. Drasdo, Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro, Biophysical J., 88 (2005), 62-75.

    [10]

    J. Godlewski, A. Bronisz, M. O. Nowicki, E. A. Chiocca and S. Lawler, microRNA-451: A conditional switch controlling glioma cell proliferation and migration, Cell Cycle, 9 (2010), 2742-2748.

    [11]

    J. Godlewski, M. O. Nowicki, A. Bronisz, G. Palatini, J. Nuovo, M. D. Lay, J. V. Brocklyn, M. C. Ostrowski, E. A. Chiocca and S. E. Lawler, MircroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells, Molecular Cell, 37 (2010), 620-632.

    [12]

    M. E. Gracheva and H. G. Othmer, A continuum model of motility in ameboid cells, Bull. Math. Biol., 66 (2004), 167-193.doi: 10.1016/j.bulm.2003.08.007.

    [13]

    R. Grantab, S. Sivananthan and I. F. Tannock, The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells, Cancer Research, 66 (2006), 1033-1039.

    [14]

    P. G. Gritsenko, O. Ilina and P. Friedl, Interstitial guidance of cancer invasion, The Journal of pathology, 226 (2012), 185-199.

    [15]

    G. Helmlinger, P. A. Netti, H. C. Lichtenbeld, R. J. Melder and R. K. Jain, Solid stress inhibits the growth of multicellular tumor spheroids, Nature Biotechnology, 15 (1997), 778-783.

    [16]

    O. Ilina, G. J. Bakker, A. Vasaturo, R. M. Hofmann and P. Friedl, Two-photon laser-generated microtracks in 3D collagen lattices: Principles of MMP-dependent and -independent collective cancer cell invasion, Phys Biol., 8 (2011), 015010.

    [17]

    V. L. Jacobs, P. A. Valdes, W. F. Hickey and J. A. De Leo, Current review of in vivo GBM rodent models: emphasis on the CNS-1 tumour model, ASN NEURO, 3 (2011), e00063.

    [18]

    J. Kalpathy-Cramer, E. R. Gerstner, K. E. Emblem, O. C. Andronesi and B. Rosen, Advanced magnetic resonance imaging of the physical processes in human glioblastoma, Cancer Res, 74 (2014), 4622-4637.

    [19]

    J. Kim and C. V. Dang, Cancer's molecular sweet tooth and the Warburg effect, Cancer research, 66 (2006), p8927.

    [20]

    Y. Kim, Regulation of cell proliferation and migration in glioblastoma: New therapeutic approach, Frontiers in Molecular and Cellular Oncology, 3 (2013), p53.

    [21]

    Y. Kim and S. Roh, A hybrid model for cell proliferation and migration in glioblastoma, Discrete and Continuous Dynamical Systems-B, 18 (2013), 969-1015.doi: 10.3934/dcdsb.2013.18.969.

    [22]

    Y. Kim, M. Stolarska and H. G. Othmer, A hybrid model for tumor spheroid growth in vitro I: Theoretical development and early results, Math. Models Methods in Appl Sci, 17 (2007), 1773-1798.doi: 10.1142/S0218202507002479.

    [23]

    Y. Kim, S. Lawler, M. O. Nowicki, E. A. Chiocca and A. Friedman, A mathematical model of Brain tumor: Pattern formation of glioma cells outside the tumor spheroid core, J. Theo. Biol., 260 (2009), 359-371.doi: 10.1016/j.jtbi.2009.06.025.

    [24]

    Y. Kim, S. Roh, S. Lawler and A. Friedman, miR451 and AMPK/MARK mutual antagonism in glioma cells migration and proliferation, PLoS One, 6 (2011), e28293.

    [25]

    Y. Kim, M. A. Stolarska and H. G. Othmer, The role of the microenvironment in tumor growth and invasion, Progress in Biophysics and Molecular Biology, 106 (2011b), 353-379.

    [26]

    Y. Kim, H. G. Lee, N. Dmitrieva, J. Kim, B. Kaur and A. Friedman, Choindroitinase ABC I-mediated enhancement of oncolytic virus spread and anti-tumor efficacy: A mathematical model, PLoS One, 9 (2014), e102499.

    [27]

    Y. Kim and H. G. Othmer, A hybrid model of tumor-stromal interactions in breast cancer, Bull. Math. Biol., 75 (2013), 1304-1350.doi: 10.1007/s11538-012-9787-0.

    [28]

    J. S. Lowengrub, H. B. Frieboes, F. Jin, Y. L. Chuang, X. Li, P. Macklin, S. M. Wise and V. Cristini, Nonlinear modelling of cancer: Bridging the gap between cells and tumours, Nonlinearity, 23 (2010), R1-R91.doi: 10.1088/0951-7715/23/1/R01.

    [29]

    P. Macklin, S. McDougall, A. R. A. Anderson, M. A. J. Chaplain, V. Cristini and J. Lowengrub, Multiscale modelling and nonlinear simulation of vascular tumour growth, J. Math. Biol., 58 (2009), 765-798.doi: 10.1007/s00285-008-0216-9.

    [30]

    J. Massague, TGF-beta signal transduction, Annual Review of Biochemistry, 67 ( 1998), p753.

    [31]

    J. Massagué, TGF [beta] in Cancer, Cell, 134 (2008), 215-230.

    [32]

    L. M. F. Merlo, J. W. Pepper, B. J. Reid and C. C. Maley, Cancer as an evolutionary and ecological process, Nature Reviews Cancer, 6 (2006), 924-935.

    [33]

    E. Palsson, A 3-D model used to explore how cell adhesion and stiffness affect cell sorting and movement in multicellular systems, J Theor Biol, 254 (2008), 1-13.doi: 10.1016/j.jtbi.2008.05.004.

    [34]

    E. Palsson and H. G. Othmer, A model for individual and collective cell movement in dictyostelium discoideum, Proceedings of the National Academy of Science, 97 (2000), 11448-11453.

    [35]

    D. J. Silver, F. A. Siebzehnrubl, M. J. Schildts, A. T. Yachnis, G. M. Smith, A. A. Smith, B. Scheffler, B. A. Reynolds, J. Silver and D. A. Steindler, Chondroitin sulfate proteoglycans potently inhibit invasion and serve as a central organizer of the brain tumor microenvironment, The Journal of Neuroscience, 33 (2013), 15603-15617.

    [36]

    K. S. M. Smalley, M. Lioni and M. Herlyn, Life isn't flat: Taking cancer biology to the next dimension, In Vitro Cell Dev Biol Anim, 42 (2006), 242-247.

    [37]

    A. M. Stein, T. Demuth, D. Mobley, M. Berens and L. M. Sander, A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment, Biophys J, 92 (2007), 356-365.

    [38]

    M. A. Stolarska, Y. Kim and H. G. Othmer, Multi-scale models of cell and tissue dynamics, Philosophical Transactions of the Royal Society A, 367 (2009), 3525-3553.doi: 10.1098/rsta.2009.0095.

    [39]

    T. D. Tlsty, Stromal cells can contribute oncogenic signals, Semin Cancer Biol, 11 (2001), 97-104.

    [40]

    R. Wani, N. S. Bharathi, J. Field, A. W. Tsang and C. M. Furdui, Oxidation of Akt2 kinase promotes cell migration and regulates G, Cell cycle, 10 (2011), 3263-3268.

    [41]

    O. Warburg, On the origin of cancer cells, Science, 123 (1956), 309-314.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(139) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return