2015, 12(6): 1189-1202. doi: 10.3934/mbe.2015.12.1189

Synergistic effect of blocking cancer cell invasion revealed by computer simulations

1. 

Division of Mathematical Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo, 108-8639, Japan

Received  October 2014 Revised  June 2015 Published  August 2015

Invasion and metastasis are the main cause of death in cancer patients. The initial step of invasion is the degradation of extracellular matrix (ECM) by primary cancer cells in a tissue. Membranous metalloproteinase MT1-MMP and soluble metalloproteinase MMP-2 are thought to play an important role in the degradation of ECM. In the previous report, we found that the repetitive insertion of MT1-MMP to invadopodia was crucial for the effective degradation of ECM (Hoshino, D., et al., PLoS Comp. Biol., 2012, e1002479). However, the role of MMP-2 and the effect of inhibitors for these ECM-degrading proteases were still obscure. Here we investigated these two problems by using the same model as in the previous report. First we tested the effect of MMP-2 and found that while MT1-MMP played a major role in the degradation of ECM, MMP-2 played only a marginal effect on the degradation of ECM. Based on these findings, we next tested the effect of a putative inhibitor for MT1-MMP and found that such inhibitor was ineffective in blocking ECM degradation. Then we tested combined strategy including inhibitor for MT1-MMP, reduction of its turnover and its content in vesicles. A synergistic effect of combined strategy was observed in the decrease in the efficacy of ECM degradation. Our simulation study suggests the importance of combined strategy in blocking cancer invasion and metastasis.
Citation: Kazuhisa Ichikawa. Synergistic effect of blocking cancer cell invasion revealed by computer simulations. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1189-1202. doi: 10.3934/mbe.2015.12.1189
References:
[1]

V. V. Artym, Y. Zhang, F. Seillier-Moiseiwitsch, K. M. Yamada and S. C. Mueller, Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function,, Cancer Res, 66 (2006), 3034.  doi: 10.1158/0008-5472.CAN-05-2177.  Google Scholar

[2]

H. F. Bigg, C. J. Morrison, G. S. Butler, M. A. Bogoyevitch and Z. Wang, et al., Tissue inhibitor of metalloproteinases-4 inhibits but does not support the activation of gelatinase A via efficient inhibition of membrane type 1-matrix metalloproteinase,, Cancer Res, 61 (2001), 3610.   Google Scholar

[3]

M. Egeblad and Z. Werb, New functions for the matrix metalloproteinases in cancer progression,, NatRevCancer, 2 (2002), 161.  doi: 10.1038/nrc745.  Google Scholar

[4]

D. Hoshino, N. Koshikawa, T. Suzuki, V. Quaranta and A. M. Weaver, et al., Establishment and validation of computational model for MT1-MMP dependent ECM degradation and intervention strategies,, PLoS Comput Biol, 8 (2012).  doi: 10.1371/journal.pcbi.1002479.  Google Scholar

[5]

K. Ichikawa, A-Cell: graphical user interface for the construction of biochemical reaction models,, Bioinformatics, 17 (2001), 483.  doi: 10.1093/bioinformatics/17.5.483.  Google Scholar

[6]

K. Ichikawa, A modeling environment with three-dimensional morphology, A-Cell-3D, and Ca2+ dynamics in a spine,, Neuroinformatics, 3 (2005), 49.   Google Scholar

[7]

E. Maquoi, D. Assent, J. Detilleux, C. Pequeux and J. M. Foidart, et al., MT1-MMP protects breast carcinoma cells against type I collagen-induced apoptosis,, Oncogene, 31 (2012), 480.  doi: 10.1038/onc.2011.249.  Google Scholar

[8]

H. Nagase, R. Visse and G. Murphy, Structure and function of matrix metalloproteinases and TIMPs,, Cardiovasc Res, 69 (2006), 562.  doi: 10.1016/j.cardiores.2005.12.002.  Google Scholar

[9]

T. Nonaka, K. Nishibashi, Y. Itoh, I. Yana and M. Seiki, Competitive disruption of the tumor-promoting function of membrane type 1 matrix metalloproteinase/matrix metalloproteinase-14 in vivo,, MolCancer Ther, 4 (2005), 1157.   Google Scholar

[10]

M. Schoumacher, R. D. Goldman, D. Louvard and D. M. Vignjevic, Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia,, J Cell Biol, 189 (2010), 541.  doi: 10.1083/jcb.200909113.  Google Scholar

[11]

K. Taniwaki, H. Fukamachi, K. Komori, Y. Ohtake and T. Nonaka, et al., Stroma-derived matrix metalloproteinase (MMP)-2 promotes membrane type 1-MMP-dependent tumor growth in mice,, Cancer Res, 67 (2007), 4311.  doi: 10.1158/0008-5472.CAN-06-4761.  Google Scholar

[12]

A. Watanabe, D. Hosino, N. Koshikawa, M. Seiki and T. Suzuki, et al., Critical role of transient activity of MT1-MMP for ECM degradation in invadopodia,, PLoS Comput Biol, 9 (2013).   Google Scholar

[13]

A. M. Weaver, Invadopodia: Specialized cell structures for cancer invasion,, ClinExpMetastasis, 23 (2006), 97.  doi: 10.1007/s10585-006-9014-1.  Google Scholar

show all references

References:
[1]

V. V. Artym, Y. Zhang, F. Seillier-Moiseiwitsch, K. M. Yamada and S. C. Mueller, Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function,, Cancer Res, 66 (2006), 3034.  doi: 10.1158/0008-5472.CAN-05-2177.  Google Scholar

[2]

H. F. Bigg, C. J. Morrison, G. S. Butler, M. A. Bogoyevitch and Z. Wang, et al., Tissue inhibitor of metalloproteinases-4 inhibits but does not support the activation of gelatinase A via efficient inhibition of membrane type 1-matrix metalloproteinase,, Cancer Res, 61 (2001), 3610.   Google Scholar

[3]

M. Egeblad and Z. Werb, New functions for the matrix metalloproteinases in cancer progression,, NatRevCancer, 2 (2002), 161.  doi: 10.1038/nrc745.  Google Scholar

[4]

D. Hoshino, N. Koshikawa, T. Suzuki, V. Quaranta and A. M. Weaver, et al., Establishment and validation of computational model for MT1-MMP dependent ECM degradation and intervention strategies,, PLoS Comput Biol, 8 (2012).  doi: 10.1371/journal.pcbi.1002479.  Google Scholar

[5]

K. Ichikawa, A-Cell: graphical user interface for the construction of biochemical reaction models,, Bioinformatics, 17 (2001), 483.  doi: 10.1093/bioinformatics/17.5.483.  Google Scholar

[6]

K. Ichikawa, A modeling environment with three-dimensional morphology, A-Cell-3D, and Ca2+ dynamics in a spine,, Neuroinformatics, 3 (2005), 49.   Google Scholar

[7]

E. Maquoi, D. Assent, J. Detilleux, C. Pequeux and J. M. Foidart, et al., MT1-MMP protects breast carcinoma cells against type I collagen-induced apoptosis,, Oncogene, 31 (2012), 480.  doi: 10.1038/onc.2011.249.  Google Scholar

[8]

H. Nagase, R. Visse and G. Murphy, Structure and function of matrix metalloproteinases and TIMPs,, Cardiovasc Res, 69 (2006), 562.  doi: 10.1016/j.cardiores.2005.12.002.  Google Scholar

[9]

T. Nonaka, K. Nishibashi, Y. Itoh, I. Yana and M. Seiki, Competitive disruption of the tumor-promoting function of membrane type 1 matrix metalloproteinase/matrix metalloproteinase-14 in vivo,, MolCancer Ther, 4 (2005), 1157.   Google Scholar

[10]

M. Schoumacher, R. D. Goldman, D. Louvard and D. M. Vignjevic, Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia,, J Cell Biol, 189 (2010), 541.  doi: 10.1083/jcb.200909113.  Google Scholar

[11]

K. Taniwaki, H. Fukamachi, K. Komori, Y. Ohtake and T. Nonaka, et al., Stroma-derived matrix metalloproteinase (MMP)-2 promotes membrane type 1-MMP-dependent tumor growth in mice,, Cancer Res, 67 (2007), 4311.  doi: 10.1158/0008-5472.CAN-06-4761.  Google Scholar

[12]

A. Watanabe, D. Hosino, N. Koshikawa, M. Seiki and T. Suzuki, et al., Critical role of transient activity of MT1-MMP for ECM degradation in invadopodia,, PLoS Comput Biol, 9 (2013).   Google Scholar

[13]

A. M. Weaver, Invadopodia: Specialized cell structures for cancer invasion,, ClinExpMetastasis, 23 (2006), 97.  doi: 10.1007/s10585-006-9014-1.  Google Scholar

[1]

Natalia L. Komarova. Spatial stochastic models of cancer: Fitness, migration, invasion. Mathematical Biosciences & Engineering, 2013, 10 (3) : 761-775. doi: 10.3934/mbe.2013.10.761

[2]

M.A.J Chaplain, G. Lolas. Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks & Heterogeneous Media, 2006, 1 (3) : 399-439. doi: 10.3934/nhm.2006.1.399

[3]

Frédérique Billy, Jean Clairambault. Designing proliferating cell population models with functional targets for control by anti-cancer drugs. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 865-889. doi: 10.3934/dcdsb.2013.18.865

[4]

Jan Giesselmann, Niklas Kolbe, Mária Lukáčová-Medvi${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over d} }}$ová, Nikolaos Sfakianakis. Existence and uniqueness of global classical solutions to a two dimensional two species cancer invasion haptotaxis model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4397-4431. doi: 10.3934/dcdsb.2018169

[5]

Motserrat Corbera, Jaume Llibre, Claudia Valls. Periodic orbits of perturbed non-axially symmetric potentials in 1:1:1 and 1:1:2 resonances. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2299-2337. doi: 10.3934/dcdsb.2018101

[6]

Agust Sverrir Egilsson. On embedding the $1:1:2$ resonance space in a Poisson manifold. Electronic Research Announcements, 1995, 1: 48-56.

[7]

Jörg Schmeling. A notion of independence via moving targets. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 269-280. doi: 10.3934/dcds.2006.15.269

[8]

Jie Lou, Tommaso Ruggeri, Claudio Tebaldi. Modeling Cancer in HIV-1 Infected Individuals: Equilibria, Cycles and Chaotic Behavior. Mathematical Biosciences & Engineering, 2006, 3 (2) : 313-324. doi: 10.3934/mbe.2006.3.313

[9]

Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050

[10]

Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409

[11]

Florent Foucaud, Tero Laihonen, Aline Parreau. An improved lower bound for $(1,\leq 2)$-identifying codes in the king grid. Advances in Mathematics of Communications, 2014, 8 (1) : 35-52. doi: 10.3934/amc.2014.8.35

[12]

Jason Murphy. The defocusing $\dot{H}^{1/2}$-critical NLS in high dimensions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 733-748. doi: 10.3934/dcds.2014.34.733

[13]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[14]

Zehui Shao, Huiqin Jiang, Aleksander Vesel. L(2, 1)-labeling of the Cartesian and strong product of two directed cycles. Mathematical Foundations of Computing, 2018, 1 (1) : 49-61. doi: 10.3934/mfc.2018003

[15]

Alicia Cordero, José Martínez Alfaro, Pura Vindel. Bott integrable Hamiltonian systems on $S^{2}\times S^{1}$. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 587-604. doi: 10.3934/dcds.2008.22.587

[16]

Kristin R. Swanson, Ellsworth C. Alvord, Jr, J. D. Murray. Dynamics of a model for brain tumors reveals a small window for therapeutic intervention. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 289-295. doi: 10.3934/dcdsb.2004.4.289

[17]

M. De Boeck, P. Vandendriessche. On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^{2})$. Advances in Mathematics of Communications, 2014, 8 (3) : 281-296. doi: 10.3934/amc.2014.8.281

[18]

Markku Lehtinen, Baylie Damtie, Petteri Piiroinen, Mikko Orispää. Perfect and almost perfect pulse compression codes for range spread radar targets. Inverse Problems & Imaging, 2009, 3 (3) : 465-486. doi: 10.3934/ipi.2009.3.465

[19]

Giovanni Bozza, Massimo Brignone, Matteo Pastorino, Andrea Randazzo, Michele Piana. Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering. Inverse Problems & Imaging, 2009, 3 (2) : 231-241. doi: 10.3934/ipi.2009.3.231

[20]

Rong Liu, Saini Jonathan Tishari. Automatic tracking and positioning algorithm for moving targets in complex environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1251-1264. doi: 10.3934/dcdss.2019086

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]