• Previous Article
    An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival
  • MBE Home
  • This Issue
  • Next Article
    Synergistic effect of blocking cancer cell invasion revealed by computer simulations
2015, 12(6): 1203-1217. doi: 10.3934/mbe.2015.12.1203

The role of the cytokines IL-27 and IL-35 in cancer

1. 

Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210

2. 

Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, United States

Received  October 2014 Revised  February 2015 Published  August 2015

The cancer-immune interaction is a fast growing field of research in biology, where the goal is to harness the immune system to fight cancer more effectively. In the present paper we review recent work of the interaction between T cells and cancer. CD8$^+$ T cells are activated by IL-27 cytokine and they kill tumor cells. Regulatory T cells produce IL-35 which promotes cancer cells by enhancing angiogenesis, and inhibit CD8$^+$ T cells via TGF-$\beta$ production. Hence injections of IL-27 and anti-IL-35 are both potentially anti-tumor drugs. The models presented here are based on experimental mouse experiments, and their simulations agree with these experiments. The models are used to suggest effective schedules for drug treatment.
Citation: Avner Friedman, Kang-Ling Liao. The role of the cytokines IL-27 and IL-35 in cancer. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1203-1217. doi: 10.3934/mbe.2015.12.1203
References:
[1]

K. Asadullah, W. Sterry and H. D. Volk, Interleukin-10 Therapy - Review of a New Approach,, Pharmacological Reviews, 55 (2003), 241.   Google Scholar

[2]

K. C. Boelte, L. E. Gordy, S. Joyce, M. A. Thompson, L. Yang and P. C. Lin, Rgs2 mediates pro-angiogenic function of myeloid derived suppressor cells in the tumor microenvironment via upregulation of MCP-1,, PLoS ONE, 6 (2011).   Google Scholar

[3]

F. Broere, S. G. Apasov, M. V. Sitkovsky and W. V. Eden, T cell subsets and T cell-mediated immunity,, Principles of Immunopharmacology: 3rd revised and extended edition, (2011).   Google Scholar

[4]

M. J. Brunda, L. Luistro, R. R. Warrier, R. B. Wright, B. R. Hubbard, M. Murphy, S. F. Wolf and M. K. Gately, Antitumor and antimetastatic activity of interleukin 12 against murine tumors,, The Journal of Experimental Medicine, 178 (1993), 1223.   Google Scholar

[5]

B. D. Car, V. M. Eng, J. M. Lipman and T. D. Anderson, The toxicology of interleukin-12: A review,, Toxicologic Pathology, 27 (1999), 58.   Google Scholar

[6]

V. Chaturvedi, L. W. Collison, C. S. Guy, C. J. Workman and D. A. A. Vignali, Human regulatory T cells eequire Interleukin-35 to mediate suppression and infectious tolerance,, J. Immunol., 186 (2011), 6661.   Google Scholar

[7]

F. Cavallo, P. Signorelli, M. Giovarelli, P. Musiani, A. Modesti, M. J. Brunda, M. P. Colombo and G. Forni, Antitumor efficacy of adenocarcinoma cells engineered to produce interleukin 12 (il-12) or other cytokines compared with exogenous il-12,, Journal of the National Cancer Institute, 89 (1997), 1049.   Google Scholar

[8]

D. Chen, J. M. Roda, C. B. Marsh, T. D. Eubank and A. Friedman, Hypoxia inducible factors-mediated inhibition of cancer by GM-CSF: A mathematical model,, Bull. Math. Biol., 74 (2012), 2752.   Google Scholar

[9]

M. Chiyo, O. Shimozato, T. Lizasa, T. Fujisawa and M. Tagawa, Antitumor effects produced by transduction of dendritic cells-derived heterodimeric cytokine genes in murine colon carcinoma cells,, Anticancer Res., 24 (2004), 3763.   Google Scholar

[10]

C. Cocco, S. Canale, C. Frasson, E. Di Carlo, E. Ognio, D. Ribatti, I. Prigione, G. Basso and I. Airoldi, Interleukin-23 acts as antitumor agent on childhood B-acute lymphoblastic leukemia cells,, Blood, 116 (2010), 3887.   Google Scholar

[11]

L. W. Collison, C. J. Workman, T. T. Kuo, K. Boyd, Y. Wang, K. M. Vignali, R. Cross, D. Sehy, R. S. Blumberg and D. A. Vignali, The inhibitory cytokine IL-35 contributes to regulatory T-cell function,, Nature, 450 (2007), 566.   Google Scholar

[12]

L. W. Collison and D. A. A. Vignali, Interleukin-35: Odd one out or part of the family?,, Immunol. Rev., 226 (2008), 248.   Google Scholar

[13]

L. W. Collison, G. M. Delgoffe, C. S. Guy, K. M. Vignali, V. Chaturvedi, D. Fairweather, A. R. Satoskar, K. C. Garcia, C. A. Hunter, C. G. Drake, P. J. Murray and D. A. A. Vignali, The composition and signaling of the IL-35 receptor are unconventional,, Nature immunology, 13 (2012), 290.   Google Scholar

[14]

M. P. Colombo and G. Trinchieri, Interleukin-12 in anti-tumor immunity and immunotherapy,, Cytokine Growth Factor Rev., 13 (2002), 155.   Google Scholar

[15]

K. Eller, D. Wolf, J. M. Huber, M. Metz, G. Mayer, A. N. J. McKenzie, M. Maurer, A. R. Rosenkranz and A. M. Wolf, IL-9 production by regulatory T cells recruits mast cells that are essential for regulatory T cell-onduced immune suppression., J. Immunology, 186 (2011), 83.   Google Scholar

[16]

T. Eubank, R. D. Roberts, M. Galoway, Y. Wang, D. Cohn and C. Marsh, GM-CSF induces expression of soluble VEGF receptor-1 from human monocytes and inhibits angiogenesis in mice,, Immunity, 21 (2004), 831.   Google Scholar

[17]

T. Eubank, R. D. Roberts, M. Khan, J. Curry, G. J. Nuovo, P. Kuppusamyl and C. Marsh, Granulocyte macrophage Colony-Stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages,, Cancer Res., 69 (2009), 2133.   Google Scholar

[18]

T. Eubank, J. M. Roda, H. Liu, T. O'Neil and C. Marsh, Opposing roles for HIF-1$\alpha$ and HIF-2$\alpha$ in the regulation of angiogenesis by mononuclear phagocytes,, Blood, 117 (2011), 323.   Google Scholar

[19]

S. Fujii, K. Shimizu, T. Shimizu and M. T. Lotze, Interleukin-10 promotes the maintenance of antitumor CD8(+) T-cell effector function in situ,, Blood, 98 (2001), 2143.   Google Scholar

[20]

D. I. Gabrilovich, S. O. Rosenberg and V. Bronte, Coordinated regulation of myeloid cells by tumors,, Nat. Rev. Immunol., 12 (2012), 253.   Google Scholar

[21]

H. Groux, M. Bigler, J. E. Vries and M. G. Roncarolo, Inhibitory and Stimulatory Effects of IL-10 on Human CD8$^+$ T Cells,, J Immunol, 160 (1998), 3188.   Google Scholar

[22]

H. Grous, F. Coottrez, M. Rouleau, S. Mauze, S. Antonenko, S. Hurst, T. McNeil, M. Bigler, M. G. Roncarolo and R. L. Coffman, A transgenic model to analyze the immunoregulatory role of IL-10 secreted by antigen-presenting cells,, J. Immunol, 162 (1999), 1723.   Google Scholar

[23]

M. Hisada, S. Kamiya, K. Fujita, M. L. Belladonna, T. Aoki, Y. Koyanagi, J. Mizuguchi and T. Yoshimoto, Potent antitumor activity of interleukin-27,, Cancer Res, 64 (2004), 1152.   Google Scholar

[24]

M. Y. Ho, S. J. Leu, G. H. Sun, M. H. Tao, S. J. Tang and K. H. Sun, IL-27 directly restrains lung tumorigenicity by suppressing cyclooxygenase-2-mediated activities,, J. Immunol., 183 (2009), 6217.   Google Scholar

[25]

C. A. Hunter, New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions,, Nat Rev Immunol, 5 (2005), 521.   Google Scholar

[26]

E. Itakura, R. R. Huang, D. R. Wen, E. Paul, P. Wünsch and A. J. Cochran, IL-10 expression by primary tumor cells correlates with melanoma progression from radial to vertical growth phase and development of metastatic competence,, Modern Pathology, 24 (2011), 801.   Google Scholar

[27]

T. Kaiga, M. Sato, H. Kaneda, Y. Iwakura, T. Takayama and H. Tahara, Systemic administration of IL-23 induces potent antitumor immunity primarily mediated through Th1-type response in association with the endogenously expressed IL-12,, J Immunol., 178 (2007), 7571.   Google Scholar

[28]

K. W. Kross, J. H. Heimdal, C. Olsnes, J. Olofson and H. J. Aarstad, Tumour-associated macrophages secrete IL-6 and MCP-1 in head and neck squamous cell carcinoma tissue,, Acta Otolaryngol, 127 (2007), 532.   Google Scholar

[29]

H. H. Lee, S. S. Yang, M. T. Vo, W. J. Cho, B. J. Lee, S. H. Leem, S. H. Lee, H. J. Cha and J. W. Park, Tristetraprolin down-regulates IL-23 expression in colon cancer cells,, Mol. Cells, 36 (2013), 571.   Google Scholar

[30]

J. Li, L. Zhang, J. Zhang, Y. Wei, K. Li, L. Huang, S. Zhang, B. Gao, X. Wang and P. Lin, Interleukin 23 regulates proliferation of lung cancer cells in a concentration-dependent way in association with the interleukin-23 receptor,, Carcinogenesis, 34 (2012), 658.   Google Scholar

[31]

K.-L. Liao, X.-F. Bai and A. Friedman, Mathematical modeling of Interleukin-27 induction of anti-tumor T cells response,, PLoS ONE, 9 (2014).   Google Scholar

[32]

K.-L. Liao, X.-F. Bai and A. Friedman, Mathematical modeling of Interleukin 35 promoting tumor growth and angiogenesis,, PLoS ONE, 9 (2014).   Google Scholar

[33]

Z. Liu, J.-Q. Liu, F. Talebian, L.-C. Wu, S. Li and X.-F. Bai, IL-27 enhances the survival of tumor antigen-specific CD8$^+$ T cells and programs them into IL-10-producing, memory precursor-like effector cells,, European J. of Immunology, 43 (2013), 468.   Google Scholar

[34]

U. K. Liyanage, T. T. Moore, H. G. Joo, Y. Tanaka, V. Herrmann, G. Doherty, J. A. Drebin, S. M. Strasberg, T. J. Eberlein, P. S. Goedegebuure and D. C. Linehan, Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma,, J. Immunol., 169 (2002), 2756.   Google Scholar

[35]

J. Long, X. Zhang, M. Wena, Q. Kong, Z. Lv, Y. An and X.-Q. Wei, IL-35 over-expression increases apoptosis sensitivity and suppresses cell growth in human cancer cells,, Biochemical and Biophysical Research Communications, 430 (2013), 364.   Google Scholar

[36]

K. Loser and S. Beissert, Regulatory T Cells: Banned Cells for Decades,, J. Investigative Dermatology, 132 (2012), 864.   Google Scholar

[37]

Y. Louzoun, C. Xue, G. B. Lesinski and A. Friedman, A mathematical model for pancreatic cancer growth and treatments,, J. Theor. Biol., 351 (2014), 74.  doi: 10.1016/j.jtbi.2014.02.028.  Google Scholar

[38]

T. A. Mace, Z. Ameen, A. Collins, S. E. Wojcik, M. Mair, G. S. Young, J. R. Fuchs, T. D. Eubank, W. L. Frankel, T. Bekaii-Saab, M. Bloomston and G. B. Lesinski, Pancreatic cancer associated stellate cells promote differentiation of myeloid-derived suppressor cells in a stat3-dependent manner,, Cancer Res., 73 (2013), 3007.   Google Scholar

[39]

E. Marshall, Cancer trial of interleukin-12 halted,, Science (Wash DC), 268 (1995).   Google Scholar

[40]

N. Morishima, I. Mizoguchi, M. Okumura, Y. Chiba, M. Shimizu, M. Xu, M. Matsui, J. Mizuguchi and T. Yoshimoto, A prvotal role for interleukin-27 in CD8$^+$ T cell functions and generation of cutotoxic T lymphocytes,, J. Biomed Biotechnol, 2010 (2010).  doi: 10.1155/2010/605483.  Google Scholar

[41]

J. B. Mumm, J. Emmerich, X. Zhang, I. Chan, L. Mauze, S. Wu, S. Blaisdell, B. Basham, J. Dai, J. Grein, C. Sheppard, K. Hong, C. Cutler, S. Turner, D. Laface, M. Kleinscher, M. Judo, G. Ayanoglu, J. Langowski, D. Paporello, B. Gu, E. Murphy, V. Sriram, S. Naravula, B. Desai, S. Medicherla, W. Seghezzi, T. McClanahan, S. Csnnon-Carlson, A. M. Beebe and M. Oft, IL-10 elicits IFN-$\gamma$-dependent tumor immune surveillance,, Cancer Cell, 20 (2011), 781.   Google Scholar

[42]

M. B. Omary, A. Lugea, A. W. Lowe and S. J. Pandol, The pancreatic stellate cell: a star on the rise in pancreatic diseases,, J. Clin Invest., 117 (2007), 50.   Google Scholar

[43]

J. G. Quatromoni, E. Suzuki, O. Okusanya, B. F. Judy, P. Bhojnagarwala, O. Venegas, E. Eruslanov, J. D. Predina, S. M. Albelda and S. Singhal, The timing of TGF-$\beta$ inhibition affects the generation of antigen-specific CD8$^+$ T cells,, BMC Immunol, 14 (2013).  doi: 10.1186/1471-2172-14-30.  Google Scholar

[44]

A. L. Rakhmilevich, K. Janssen, J. Turner, J. Culp and N. S. Yang, Cytokine gene therapy of cancer using gene gun technology: Superior antitumor activity of interleukin-12,, Hum Gene Ther, 8 (1997), 1303.   Google Scholar

[45]

J. C. Reay, Therapeutic gene therapy for cancer with interleukin-23,, 2010., ().   Google Scholar

[46]

S. Sakaguchi, K. Wing, Y. Onishi, P. Prieto-Martin and T. Yamaguchi, Regulatory T cells: how do they suppress immune responses?,, International Immunology, 21 (2012), 1105.   Google Scholar

[47]

R. Salcedo, J. A. Hixon, J. K. Stauffer, R. Jalah, A. D. Brooks, T. Khan, R. M. Dai, L. Scheetz, E. Lincoln, T. C. Back, D. Powell, A. A. Hurwitz, T. J. Sayers, R. Kastelein, G. N. Pavlakis, B. K. Felber, G. Trinchieri and J. M. Wigginton, Immunologic and therapeutic synergy of IL-27 and IL-2: Ehancement of T cell sensitization, tumor-specific CTL reactivity and complete regression of disseminated neuroblastoma metastases in the liver and bone marrow,, J. Immunol., 182 (2009), 4328.   Google Scholar

[48]

R. Salcedo, J. K. Stauffer, E. Lincoln, T. C. Back, J. A. Hixon, C. Hahn, K. Shafer-Weaver, A. Malyguine, R. Kastelein and J. M. Wigginton, IL-27 mediated complete regression of orthotopic primary and metastatic murine neuroblastoma tumors: role for CD8$^+$ T cells,, J. Immunol., 173 (2004), 7170.   Google Scholar

[49]

F. W. Shek, R. C. Benyon, F. M. Walker, P. R. McCrudden, S. L. Pender, E. J. Williams, P. A. Johnson, C. D. Johnson, A. C. Bateman, D. R. Fine and J. P. Iredale, Expression of transforming growth factor-beta 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis,, Am. J. Pathol., 160 (2002), 1787.   Google Scholar

[50]

Y. Shinozaki, S. Wang, Y. Miyazaki, K. Miyazaki, H. Yamada, Y. Yoshikai, H. Hara and H. Yoshida, Tumor-specific cutotoxic T cell generation and dendritic cell function are differentially regulated by interleukin 27 during development of anti-tumor immunity,, Int. J. Cancer, 124 (2009), 1372.   Google Scholar

[51]

L. Strauss, C. Bergmann, M. Szczepanski, W. Gooding, J. T. Johnson and T. L. Whiteside, A Unique subset of CD4$^+$$CD25^{high}$Fox $p3^{+}$ T cells secreting Interleukin-10 and transforming growth factor-$\beta 1$ mediates suppression in the tumor microenvironment,, Clinical Cancer Research, 13 (2007), 4345.   Google Scholar

[52]

A. Swarbrick, S. R. Junankar and M. Batten, Could the properties of IL-27 make it an ideal adjuvant for anticancer immunotherapy?,, Oncoimmunology, 2 (2013).   Google Scholar

[53]

B. Szomolay, T. Eubank, R. Roberts, C. Marsh and A. Friedman, Modeling the inhibition of breast cancer growth by GM-CSF,, J. Theor. Biol., 303 (2012), 141.  doi: 10.1016/j.jtbi.2012.03.024.  Google Scholar

[54]

T. Tanikawa, C. M. Wilke, I. Kryczek, G. Y. Chen, J. Kao, G. Nú$\ddotn$ez and W. Zou, Interleukin-10 anlation promotes tumor developments, growth, and metastasis,, Cancer Res., 72 (2012), 420.   Google Scholar

[55]

M. W. Teng, M. D. Vesely, H. Duret, N. McLaughlin, J. E. Towne, R. D. Schreiber and M. J. Smyth, Opposing roles for IL-23 and IL-12 in maintaining occult cancer in an equilibrium state,, Cancer Res., 72 (2012), 3987.   Google Scholar

[56]

D. A. Thomas and J. Massagué, TGF-$\beta$ directly targets cytotoxic T cell functions during tumor evasion of immune surveillance,, Cancer Cell, 8 (2005), 369.   Google Scholar

[57]

M. M. Tiemessen, S. Kunzmann, C. B. Schmidt-Weber, J. Garssen, C. A. Bruijnzeel-Koomen, E. F. Knol and E. van Hoffen, Transforming growth factor-beta inhibits human antigen-specific CD4$^+$ T cell proliferation without modulating the cytokine response,, Int Immunol, 14 (2003), 1495.   Google Scholar

[58]

D. A. A. Vignali, L. W. Collison and C. J. Workman, How regulatory T cells work,, Nat. Rev. Immunol., 8 (2008), 523.   Google Scholar

[59]

D. A. A. Vignali and V. K. Kuchroo, IL-12 family cytokines: Immunological playmakers,, Nature immunology, 13 (2012), 722.   Google Scholar

[60]

R. Wang, M. Lu, J. Zhang, S. Chen, X. Luo, Y. Qin and H. Chen, Increased IL-10 mRNA expression in tumor-associated macrophage correlated with late stage of lung cancer,, J. Experimental and Clinical Cancer Research, 30 (2011).  doi: 10.1186/1756-9966-30-62.  Google Scholar

[61]

V. Wang, J. Q. Liu, Z. Liu, R. Shen, G. Zhang, J. Xu, Y. Fend and X. F. Bai, Tumor-derived IL-35 promotes tumor growth by enhancing myeloid cell accumulation and angiogenesis,, J. Immuno., (2013).   Google Scholar

[62]

E. D. Wojno, N. Hosken, J. S. Stumhofer, A. C. O'Hara, E. Mauldin, Q. Fang, L. A. Turka, S. D. Levin and C. A. Hunter, A role for IL-27 in limiting T regulatory cell populations,, J Immunol, 187 (2011), 266.   Google Scholar

[63]

D. Wolf, A. M. Wolf, H. Rumpold, H. Fiegl, A. G. Zeimet, E. Muller-Holzner, M. Deibl, G. Gastl, E. Gunsilius and C. Marth, The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer,, Clin. Cancer Res., 11 (2005), 8326.   Google Scholar

[64]

M. Xu, I. Mizoguchi, N. Morishima, Y. Chiba, J. Mizuguchi and T. Yoshimoto, Regulation of antitumor immune responses by the IL-12 family cytokines, IL-12, IL-23, and IL-27,, Clinical and Developmental immunology, 2010 (2010).  doi: 10.1155/2010/832454.  Google Scholar

[65]

W. C. Yang, G. Ma, S. H. Chen and P. Y. Pan, Polarization and reprogramming of myeloid-derived suppressor cells,, J. Mol Cell Biol., 5 (2013), 207.   Google Scholar

[66]

N. G. Yousif, S. Alhasani, H. Slimani, J. Doug, B. I. Mohammad, S. Machil, A. A. Deb and N. Romalid, The role of IL-23 in regulating metastatic prostate cancer through STAT-3/ROR-gamma signaling,, 2014 Genitourinary Cancer Symposium, (2014).   Google Scholar

[67]

J.-C. Zeng, Z. Zhang, T.-Y. Li, Y.-F. Liang, H.-M. Wang, J.-J. Bao, J.-A. Zhang, W.-D. Wang, W.-Y. Xiang, B. Kong, Z.-Y. Wang, B.-H. Wu, X.-D. Chen, L. He, S. Zhang, C.-Y. Wang and J.-F. Xu, Assessing the role of IL-35 in colorectal cancer progression and prognosis,, Int J Clin Exp Pathol, 6 (2013), 1806.   Google Scholar

[68]

S. Zhu, D. A. Lee and S. Li, IL-12 and IL-27 sequential gene therapy via intramuscular eletroporation delivery for eliminating distal aggressive tumors,, J. Immunol., 184 (2010), 2348.   Google Scholar

[69]

O. Zolochevska, A. O. Diaz-Qui$\ddotn$ones, J. Ellis and M. L. Figueiredo, Interleukin-27 expression modifies prostate cancer cell crosstalk with bone and immune cells in vitro,, J. Cell Physiol., 228 (2013), 1127.   Google Scholar

show all references

References:
[1]

K. Asadullah, W. Sterry and H. D. Volk, Interleukin-10 Therapy - Review of a New Approach,, Pharmacological Reviews, 55 (2003), 241.   Google Scholar

[2]

K. C. Boelte, L. E. Gordy, S. Joyce, M. A. Thompson, L. Yang and P. C. Lin, Rgs2 mediates pro-angiogenic function of myeloid derived suppressor cells in the tumor microenvironment via upregulation of MCP-1,, PLoS ONE, 6 (2011).   Google Scholar

[3]

F. Broere, S. G. Apasov, M. V. Sitkovsky and W. V. Eden, T cell subsets and T cell-mediated immunity,, Principles of Immunopharmacology: 3rd revised and extended edition, (2011).   Google Scholar

[4]

M. J. Brunda, L. Luistro, R. R. Warrier, R. B. Wright, B. R. Hubbard, M. Murphy, S. F. Wolf and M. K. Gately, Antitumor and antimetastatic activity of interleukin 12 against murine tumors,, The Journal of Experimental Medicine, 178 (1993), 1223.   Google Scholar

[5]

B. D. Car, V. M. Eng, J. M. Lipman and T. D. Anderson, The toxicology of interleukin-12: A review,, Toxicologic Pathology, 27 (1999), 58.   Google Scholar

[6]

V. Chaturvedi, L. W. Collison, C. S. Guy, C. J. Workman and D. A. A. Vignali, Human regulatory T cells eequire Interleukin-35 to mediate suppression and infectious tolerance,, J. Immunol., 186 (2011), 6661.   Google Scholar

[7]

F. Cavallo, P. Signorelli, M. Giovarelli, P. Musiani, A. Modesti, M. J. Brunda, M. P. Colombo and G. Forni, Antitumor efficacy of adenocarcinoma cells engineered to produce interleukin 12 (il-12) or other cytokines compared with exogenous il-12,, Journal of the National Cancer Institute, 89 (1997), 1049.   Google Scholar

[8]

D. Chen, J. M. Roda, C. B. Marsh, T. D. Eubank and A. Friedman, Hypoxia inducible factors-mediated inhibition of cancer by GM-CSF: A mathematical model,, Bull. Math. Biol., 74 (2012), 2752.   Google Scholar

[9]

M. Chiyo, O. Shimozato, T. Lizasa, T. Fujisawa and M. Tagawa, Antitumor effects produced by transduction of dendritic cells-derived heterodimeric cytokine genes in murine colon carcinoma cells,, Anticancer Res., 24 (2004), 3763.   Google Scholar

[10]

C. Cocco, S. Canale, C. Frasson, E. Di Carlo, E. Ognio, D. Ribatti, I. Prigione, G. Basso and I. Airoldi, Interleukin-23 acts as antitumor agent on childhood B-acute lymphoblastic leukemia cells,, Blood, 116 (2010), 3887.   Google Scholar

[11]

L. W. Collison, C. J. Workman, T. T. Kuo, K. Boyd, Y. Wang, K. M. Vignali, R. Cross, D. Sehy, R. S. Blumberg and D. A. Vignali, The inhibitory cytokine IL-35 contributes to regulatory T-cell function,, Nature, 450 (2007), 566.   Google Scholar

[12]

L. W. Collison and D. A. A. Vignali, Interleukin-35: Odd one out or part of the family?,, Immunol. Rev., 226 (2008), 248.   Google Scholar

[13]

L. W. Collison, G. M. Delgoffe, C. S. Guy, K. M. Vignali, V. Chaturvedi, D. Fairweather, A. R. Satoskar, K. C. Garcia, C. A. Hunter, C. G. Drake, P. J. Murray and D. A. A. Vignali, The composition and signaling of the IL-35 receptor are unconventional,, Nature immunology, 13 (2012), 290.   Google Scholar

[14]

M. P. Colombo and G. Trinchieri, Interleukin-12 in anti-tumor immunity and immunotherapy,, Cytokine Growth Factor Rev., 13 (2002), 155.   Google Scholar

[15]

K. Eller, D. Wolf, J. M. Huber, M. Metz, G. Mayer, A. N. J. McKenzie, M. Maurer, A. R. Rosenkranz and A. M. Wolf, IL-9 production by regulatory T cells recruits mast cells that are essential for regulatory T cell-onduced immune suppression., J. Immunology, 186 (2011), 83.   Google Scholar

[16]

T. Eubank, R. D. Roberts, M. Galoway, Y. Wang, D. Cohn and C. Marsh, GM-CSF induces expression of soluble VEGF receptor-1 from human monocytes and inhibits angiogenesis in mice,, Immunity, 21 (2004), 831.   Google Scholar

[17]

T. Eubank, R. D. Roberts, M. Khan, J. Curry, G. J. Nuovo, P. Kuppusamyl and C. Marsh, Granulocyte macrophage Colony-Stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages,, Cancer Res., 69 (2009), 2133.   Google Scholar

[18]

T. Eubank, J. M. Roda, H. Liu, T. O'Neil and C. Marsh, Opposing roles for HIF-1$\alpha$ and HIF-2$\alpha$ in the regulation of angiogenesis by mononuclear phagocytes,, Blood, 117 (2011), 323.   Google Scholar

[19]

S. Fujii, K. Shimizu, T. Shimizu and M. T. Lotze, Interleukin-10 promotes the maintenance of antitumor CD8(+) T-cell effector function in situ,, Blood, 98 (2001), 2143.   Google Scholar

[20]

D. I. Gabrilovich, S. O. Rosenberg and V. Bronte, Coordinated regulation of myeloid cells by tumors,, Nat. Rev. Immunol., 12 (2012), 253.   Google Scholar

[21]

H. Groux, M. Bigler, J. E. Vries and M. G. Roncarolo, Inhibitory and Stimulatory Effects of IL-10 on Human CD8$^+$ T Cells,, J Immunol, 160 (1998), 3188.   Google Scholar

[22]

H. Grous, F. Coottrez, M. Rouleau, S. Mauze, S. Antonenko, S. Hurst, T. McNeil, M. Bigler, M. G. Roncarolo and R. L. Coffman, A transgenic model to analyze the immunoregulatory role of IL-10 secreted by antigen-presenting cells,, J. Immunol, 162 (1999), 1723.   Google Scholar

[23]

M. Hisada, S. Kamiya, K. Fujita, M. L. Belladonna, T. Aoki, Y. Koyanagi, J. Mizuguchi and T. Yoshimoto, Potent antitumor activity of interleukin-27,, Cancer Res, 64 (2004), 1152.   Google Scholar

[24]

M. Y. Ho, S. J. Leu, G. H. Sun, M. H. Tao, S. J. Tang and K. H. Sun, IL-27 directly restrains lung tumorigenicity by suppressing cyclooxygenase-2-mediated activities,, J. Immunol., 183 (2009), 6217.   Google Scholar

[25]

C. A. Hunter, New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions,, Nat Rev Immunol, 5 (2005), 521.   Google Scholar

[26]

E. Itakura, R. R. Huang, D. R. Wen, E. Paul, P. Wünsch and A. J. Cochran, IL-10 expression by primary tumor cells correlates with melanoma progression from radial to vertical growth phase and development of metastatic competence,, Modern Pathology, 24 (2011), 801.   Google Scholar

[27]

T. Kaiga, M. Sato, H. Kaneda, Y. Iwakura, T. Takayama and H. Tahara, Systemic administration of IL-23 induces potent antitumor immunity primarily mediated through Th1-type response in association with the endogenously expressed IL-12,, J Immunol., 178 (2007), 7571.   Google Scholar

[28]

K. W. Kross, J. H. Heimdal, C. Olsnes, J. Olofson and H. J. Aarstad, Tumour-associated macrophages secrete IL-6 and MCP-1 in head and neck squamous cell carcinoma tissue,, Acta Otolaryngol, 127 (2007), 532.   Google Scholar

[29]

H. H. Lee, S. S. Yang, M. T. Vo, W. J. Cho, B. J. Lee, S. H. Leem, S. H. Lee, H. J. Cha and J. W. Park, Tristetraprolin down-regulates IL-23 expression in colon cancer cells,, Mol. Cells, 36 (2013), 571.   Google Scholar

[30]

J. Li, L. Zhang, J. Zhang, Y. Wei, K. Li, L. Huang, S. Zhang, B. Gao, X. Wang and P. Lin, Interleukin 23 regulates proliferation of lung cancer cells in a concentration-dependent way in association with the interleukin-23 receptor,, Carcinogenesis, 34 (2012), 658.   Google Scholar

[31]

K.-L. Liao, X.-F. Bai and A. Friedman, Mathematical modeling of Interleukin-27 induction of anti-tumor T cells response,, PLoS ONE, 9 (2014).   Google Scholar

[32]

K.-L. Liao, X.-F. Bai and A. Friedman, Mathematical modeling of Interleukin 35 promoting tumor growth and angiogenesis,, PLoS ONE, 9 (2014).   Google Scholar

[33]

Z. Liu, J.-Q. Liu, F. Talebian, L.-C. Wu, S. Li and X.-F. Bai, IL-27 enhances the survival of tumor antigen-specific CD8$^+$ T cells and programs them into IL-10-producing, memory precursor-like effector cells,, European J. of Immunology, 43 (2013), 468.   Google Scholar

[34]

U. K. Liyanage, T. T. Moore, H. G. Joo, Y. Tanaka, V. Herrmann, G. Doherty, J. A. Drebin, S. M. Strasberg, T. J. Eberlein, P. S. Goedegebuure and D. C. Linehan, Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma,, J. Immunol., 169 (2002), 2756.   Google Scholar

[35]

J. Long, X. Zhang, M. Wena, Q. Kong, Z. Lv, Y. An and X.-Q. Wei, IL-35 over-expression increases apoptosis sensitivity and suppresses cell growth in human cancer cells,, Biochemical and Biophysical Research Communications, 430 (2013), 364.   Google Scholar

[36]

K. Loser and S. Beissert, Regulatory T Cells: Banned Cells for Decades,, J. Investigative Dermatology, 132 (2012), 864.   Google Scholar

[37]

Y. Louzoun, C. Xue, G. B. Lesinski and A. Friedman, A mathematical model for pancreatic cancer growth and treatments,, J. Theor. Biol., 351 (2014), 74.  doi: 10.1016/j.jtbi.2014.02.028.  Google Scholar

[38]

T. A. Mace, Z. Ameen, A. Collins, S. E. Wojcik, M. Mair, G. S. Young, J. R. Fuchs, T. D. Eubank, W. L. Frankel, T. Bekaii-Saab, M. Bloomston and G. B. Lesinski, Pancreatic cancer associated stellate cells promote differentiation of myeloid-derived suppressor cells in a stat3-dependent manner,, Cancer Res., 73 (2013), 3007.   Google Scholar

[39]

E. Marshall, Cancer trial of interleukin-12 halted,, Science (Wash DC), 268 (1995).   Google Scholar

[40]

N. Morishima, I. Mizoguchi, M. Okumura, Y. Chiba, M. Shimizu, M. Xu, M. Matsui, J. Mizuguchi and T. Yoshimoto, A prvotal role for interleukin-27 in CD8$^+$ T cell functions and generation of cutotoxic T lymphocytes,, J. Biomed Biotechnol, 2010 (2010).  doi: 10.1155/2010/605483.  Google Scholar

[41]

J. B. Mumm, J. Emmerich, X. Zhang, I. Chan, L. Mauze, S. Wu, S. Blaisdell, B. Basham, J. Dai, J. Grein, C. Sheppard, K. Hong, C. Cutler, S. Turner, D. Laface, M. Kleinscher, M. Judo, G. Ayanoglu, J. Langowski, D. Paporello, B. Gu, E. Murphy, V. Sriram, S. Naravula, B. Desai, S. Medicherla, W. Seghezzi, T. McClanahan, S. Csnnon-Carlson, A. M. Beebe and M. Oft, IL-10 elicits IFN-$\gamma$-dependent tumor immune surveillance,, Cancer Cell, 20 (2011), 781.   Google Scholar

[42]

M. B. Omary, A. Lugea, A. W. Lowe and S. J. Pandol, The pancreatic stellate cell: a star on the rise in pancreatic diseases,, J. Clin Invest., 117 (2007), 50.   Google Scholar

[43]

J. G. Quatromoni, E. Suzuki, O. Okusanya, B. F. Judy, P. Bhojnagarwala, O. Venegas, E. Eruslanov, J. D. Predina, S. M. Albelda and S. Singhal, The timing of TGF-$\beta$ inhibition affects the generation of antigen-specific CD8$^+$ T cells,, BMC Immunol, 14 (2013).  doi: 10.1186/1471-2172-14-30.  Google Scholar

[44]

A. L. Rakhmilevich, K. Janssen, J. Turner, J. Culp and N. S. Yang, Cytokine gene therapy of cancer using gene gun technology: Superior antitumor activity of interleukin-12,, Hum Gene Ther, 8 (1997), 1303.   Google Scholar

[45]

J. C. Reay, Therapeutic gene therapy for cancer with interleukin-23,, 2010., ().   Google Scholar

[46]

S. Sakaguchi, K. Wing, Y. Onishi, P. Prieto-Martin and T. Yamaguchi, Regulatory T cells: how do they suppress immune responses?,, International Immunology, 21 (2012), 1105.   Google Scholar

[47]

R. Salcedo, J. A. Hixon, J. K. Stauffer, R. Jalah, A. D. Brooks, T. Khan, R. M. Dai, L. Scheetz, E. Lincoln, T. C. Back, D. Powell, A. A. Hurwitz, T. J. Sayers, R. Kastelein, G. N. Pavlakis, B. K. Felber, G. Trinchieri and J. M. Wigginton, Immunologic and therapeutic synergy of IL-27 and IL-2: Ehancement of T cell sensitization, tumor-specific CTL reactivity and complete regression of disseminated neuroblastoma metastases in the liver and bone marrow,, J. Immunol., 182 (2009), 4328.   Google Scholar

[48]

R. Salcedo, J. K. Stauffer, E. Lincoln, T. C. Back, J. A. Hixon, C. Hahn, K. Shafer-Weaver, A. Malyguine, R. Kastelein and J. M. Wigginton, IL-27 mediated complete regression of orthotopic primary and metastatic murine neuroblastoma tumors: role for CD8$^+$ T cells,, J. Immunol., 173 (2004), 7170.   Google Scholar

[49]

F. W. Shek, R. C. Benyon, F. M. Walker, P. R. McCrudden, S. L. Pender, E. J. Williams, P. A. Johnson, C. D. Johnson, A. C. Bateman, D. R. Fine and J. P. Iredale, Expression of transforming growth factor-beta 1 by pancreatic stellate cells and its implications for matrix secretion and turnover in chronic pancreatitis,, Am. J. Pathol., 160 (2002), 1787.   Google Scholar

[50]

Y. Shinozaki, S. Wang, Y. Miyazaki, K. Miyazaki, H. Yamada, Y. Yoshikai, H. Hara and H. Yoshida, Tumor-specific cutotoxic T cell generation and dendritic cell function are differentially regulated by interleukin 27 during development of anti-tumor immunity,, Int. J. Cancer, 124 (2009), 1372.   Google Scholar

[51]

L. Strauss, C. Bergmann, M. Szczepanski, W. Gooding, J. T. Johnson and T. L. Whiteside, A Unique subset of CD4$^+$$CD25^{high}$Fox $p3^{+}$ T cells secreting Interleukin-10 and transforming growth factor-$\beta 1$ mediates suppression in the tumor microenvironment,, Clinical Cancer Research, 13 (2007), 4345.   Google Scholar

[52]

A. Swarbrick, S. R. Junankar and M. Batten, Could the properties of IL-27 make it an ideal adjuvant for anticancer immunotherapy?,, Oncoimmunology, 2 (2013).   Google Scholar

[53]

B. Szomolay, T. Eubank, R. Roberts, C. Marsh and A. Friedman, Modeling the inhibition of breast cancer growth by GM-CSF,, J. Theor. Biol., 303 (2012), 141.  doi: 10.1016/j.jtbi.2012.03.024.  Google Scholar

[54]

T. Tanikawa, C. M. Wilke, I. Kryczek, G. Y. Chen, J. Kao, G. Nú$\ddotn$ez and W. Zou, Interleukin-10 anlation promotes tumor developments, growth, and metastasis,, Cancer Res., 72 (2012), 420.   Google Scholar

[55]

M. W. Teng, M. D. Vesely, H. Duret, N. McLaughlin, J. E. Towne, R. D. Schreiber and M. J. Smyth, Opposing roles for IL-23 and IL-12 in maintaining occult cancer in an equilibrium state,, Cancer Res., 72 (2012), 3987.   Google Scholar

[56]

D. A. Thomas and J. Massagué, TGF-$\beta$ directly targets cytotoxic T cell functions during tumor evasion of immune surveillance,, Cancer Cell, 8 (2005), 369.   Google Scholar

[57]

M. M. Tiemessen, S. Kunzmann, C. B. Schmidt-Weber, J. Garssen, C. A. Bruijnzeel-Koomen, E. F. Knol and E. van Hoffen, Transforming growth factor-beta inhibits human antigen-specific CD4$^+$ T cell proliferation without modulating the cytokine response,, Int Immunol, 14 (2003), 1495.   Google Scholar

[58]

D. A. A. Vignali, L. W. Collison and C. J. Workman, How regulatory T cells work,, Nat. Rev. Immunol., 8 (2008), 523.   Google Scholar

[59]

D. A. A. Vignali and V. K. Kuchroo, IL-12 family cytokines: Immunological playmakers,, Nature immunology, 13 (2012), 722.   Google Scholar

[60]

R. Wang, M. Lu, J. Zhang, S. Chen, X. Luo, Y. Qin and H. Chen, Increased IL-10 mRNA expression in tumor-associated macrophage correlated with late stage of lung cancer,, J. Experimental and Clinical Cancer Research, 30 (2011).  doi: 10.1186/1756-9966-30-62.  Google Scholar

[61]

V. Wang, J. Q. Liu, Z. Liu, R. Shen, G. Zhang, J. Xu, Y. Fend and X. F. Bai, Tumor-derived IL-35 promotes tumor growth by enhancing myeloid cell accumulation and angiogenesis,, J. Immuno., (2013).   Google Scholar

[62]

E. D. Wojno, N. Hosken, J. S. Stumhofer, A. C. O'Hara, E. Mauldin, Q. Fang, L. A. Turka, S. D. Levin and C. A. Hunter, A role for IL-27 in limiting T regulatory cell populations,, J Immunol, 187 (2011), 266.   Google Scholar

[63]

D. Wolf, A. M. Wolf, H. Rumpold, H. Fiegl, A. G. Zeimet, E. Muller-Holzner, M. Deibl, G. Gastl, E. Gunsilius and C. Marth, The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer,, Clin. Cancer Res., 11 (2005), 8326.   Google Scholar

[64]

M. Xu, I. Mizoguchi, N. Morishima, Y. Chiba, J. Mizuguchi and T. Yoshimoto, Regulation of antitumor immune responses by the IL-12 family cytokines, IL-12, IL-23, and IL-27,, Clinical and Developmental immunology, 2010 (2010).  doi: 10.1155/2010/832454.  Google Scholar

[65]

W. C. Yang, G. Ma, S. H. Chen and P. Y. Pan, Polarization and reprogramming of myeloid-derived suppressor cells,, J. Mol Cell Biol., 5 (2013), 207.   Google Scholar

[66]

N. G. Yousif, S. Alhasani, H. Slimani, J. Doug, B. I. Mohammad, S. Machil, A. A. Deb and N. Romalid, The role of IL-23 in regulating metastatic prostate cancer through STAT-3/ROR-gamma signaling,, 2014 Genitourinary Cancer Symposium, (2014).   Google Scholar

[67]

J.-C. Zeng, Z. Zhang, T.-Y. Li, Y.-F. Liang, H.-M. Wang, J.-J. Bao, J.-A. Zhang, W.-D. Wang, W.-Y. Xiang, B. Kong, Z.-Y. Wang, B.-H. Wu, X.-D. Chen, L. He, S. Zhang, C.-Y. Wang and J.-F. Xu, Assessing the role of IL-35 in colorectal cancer progression and prognosis,, Int J Clin Exp Pathol, 6 (2013), 1806.   Google Scholar

[68]

S. Zhu, D. A. Lee and S. Li, IL-12 and IL-27 sequential gene therapy via intramuscular eletroporation delivery for eliminating distal aggressive tumors,, J. Immunol., 184 (2010), 2348.   Google Scholar

[69]

O. Zolochevska, A. O. Diaz-Qui$\ddotn$ones, J. Ellis and M. L. Figueiredo, Interleukin-27 expression modifies prostate cancer cell crosstalk with bone and immune cells in vitro,, J. Cell Physiol., 228 (2013), 1127.   Google Scholar

[1]

Urszula Foryś, Jan Poleszczuk. A delay-differential equation model of HIV related cancer--immune system dynamics. Mathematical Biosciences & Engineering, 2011, 8 (2) : 627-641. doi: 10.3934/mbe.2011.8.627

[2]

Dan Liu, Shigui Ruan, Deming Zhu. Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions. Mathematical Biosciences & Engineering, 2012, 9 (2) : 347-368. doi: 10.3934/mbe.2012.9.347

[3]

Marcello Delitala, Tommaso Lorenzi. Recognition and learning in a mathematical model for immune response against cancer. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : 891-914. doi: 10.3934/dcdsb.2013.18.891

[4]

Jianhong Wu, Weiguang Yao, Huaiping Zhu. Immune system memory realization in a population model. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 241-259. doi: 10.3934/dcdsb.2007.8.241

[5]

Mika Yoshida, Kinji Fuchikami, Tatsuya Uezu. Realization of immune response features by dynamical system models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 531-552. doi: 10.3934/mbe.2007.4.531

[6]

Alberto d'Onofrio. On the interaction between the immune system and an exponentially replicating pathogen. Mathematical Biosciences & Engineering, 2010, 7 (3) : 579-602. doi: 10.3934/mbe.2010.7.579

[7]

Dan Liu, Shigui Ruan, Deming Zhu. Bifurcation analysis in models of tumor and immune system interactions. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 151-168. doi: 10.3934/dcdsb.2009.12.151

[8]

Nasser Sweilam, Fathalla Rihan, Seham AL-Mekhlafi. A fractional-order delay differential model with optimal control for cancer treatment based on synergy between anti-angiogenic and immune cell therapies. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020120

[9]

Giulio Caravagna, Alex Graudenzi, Alberto d’Onofrio. Distributed delays in a hybrid model of tumor-Immune system interplay. Mathematical Biosciences & Engineering, 2013, 10 (1) : 37-57. doi: 10.3934/mbe.2013.10.37

[10]

Yueping Dong, Rinko Miyazaki, Yasuhiro Takeuchi. Mathematical modeling on helper T cells in a tumor immune system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 55-72. doi: 10.3934/dcdsb.2014.19.55

[11]

Mengshi Shu, Rui Fu, Wendi Wang. A bacteriophage model based on CRISPR/Cas immune system in a chemostat. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1361-1377. doi: 10.3934/mbe.2017070

[12]

Manuel Delgado, Ítalo Bruno Mendes Duarte, Antonio Suárez Fernández. Nonlocal elliptic system arising from the growth of cancer stem cells. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1767-1795. doi: 10.3934/dcdsb.2018083

[13]

Urszula Ledzewicz, Omeiza Olumoye, Heinz Schättler. On optimal chemotherapy with a strongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth. Mathematical Biosciences & Engineering, 2013, 10 (3) : 787-802. doi: 10.3934/mbe.2013.10.787

[14]

Martina Conte, Maria Groppi, Giampiero Spiga. Qualitative analysis of kinetic-based models for tumor-immune system interaction. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2393-2414. doi: 10.3934/dcdsb.2018060

[15]

Min Yu, Gang Huang, Yueping Dong, Yasuhiro Takeuchi. Complicated dynamics of tumor-immune system interaction model with distributed time delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020015

[16]

Francisco Pedroche, Regino Criado, Esther García, Miguel Romance, Victoria E. Sánchez. Comparing series of rankings with ties by using complex networks: An analysis of the Spanish stock market (IBEX-35 index). Networks & Heterogeneous Media, 2015, 10 (1) : 101-125. doi: 10.3934/nhm.2015.10.101

[17]

Tiffany A. Jones, Lou Caccetta, Volker Rehbock. Optimisation modelling of cancer growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 115-123. doi: 10.3934/dcdsb.2017006

[18]

Christoph Sadée, Eugene Kashdan. A model of thermotherapy treatment for bladder cancer. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1169-1183. doi: 10.3934/mbe.2016037

[19]

Avner Friedman. A hierarchy of cancer models and their mathematical challenges. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 147-159. doi: 10.3934/dcdsb.2004.4.147

[20]

Haitao Song, Weihua Jiang, Shengqiang Liu. Virus dynamics model with intracellular delays and immune response. Mathematical Biosciences & Engineering, 2015, 12 (1) : 185-208. doi: 10.3934/mbe.2015.12.185

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]