2015, 12(6): 1237-1256. doi: 10.3934/mbe.2015.12.1237

Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections

1. 

Department of Mathematics and Computer Science, University of Richmond, Richmond, VA

2. 

Weill Cornell Medical College, New York, NY

3. 

Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791

4. 

Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ, United States

5. 

School of Mathematics and Statistics, University of Sydney, Sydney, NSW

Received  October 2014 Revised  March 2015 Published  August 2015

Oncolytic viruses (OVs) are used to treat cancer, as they selectively replicate inside of and lyse tumor cells. The efficacy of this process is limited and new OVs are being designed to mediate tumor cell release of cytokines and co-stimulatory molecules, which attract cytotoxic T cells to target tumor cells, thus increasing the tumor-killing effects of OVs. To further promote treatment efficacy, OVs can be combined with other treatments, such as was done by Huang et al., who showed that combining OV injections with dendritic cell (DC) injections was a more effective treatment than either treatment alone. To further investigate this combination, we built a mathematical model consisting of a system of ordinary differential equations and fit the model to the hierarchical data provided from Huang et al. We used the model to determine the effect of varying doses of OV and DC injections and to test alternative treatment strategies. We found that the DC dose given in Huang et al. was near a bifurcation point and that a slightly larger dose could cause complete eradication of the tumor. Further, the model results suggest that it is more effective to treat a tumor with immunostimulatory oncolytic viruses first and then follow-up with a sequence of DCs than to alternate OV and DC injections. This protocol, which was not considered in the experiments of Huang et al., allows the infection to initially thrive before the immune response is enhanced. Taken together, our work shows how the ordering, temporal spacing, and dosage of OV and DC can be chosen to maximize efficacy and to potentially eliminate tumors altogether.
Citation: Joanna R. Wares, Joseph J. Crivelli, Chae-Ok Yun, Il-Kyu Choi, Jana L. Gevertz, Peter S. Kim. Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1237-1256. doi: 10.3934/mbe.2015.12.1237
References:
[1]

J. W. Ady, J. Heffner, K. Mojica, C. Johnsen, L. J. Belin, D. Love, C. T. Chen, A. Pugalenthi, E. Klein, N. G. Chen, Y. A. Yu, A. A. Szalay and Y. Fong, Oncolytic immunotherapy using recombinant vaccinia virus GLV-1h68 kills sorafenib-resistant hepatocellular carcinoma efficiently,, Surgery, 156 (2014), 263.  doi: 10.1016/j.surg.2014.03.031.  Google Scholar

[2]

T. Alarcón, H. M. Byrne and P. K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment,, J. Theor. Biol., 225 (2003), 257.  doi: 10.1016/S0022-5193(03)00244-3.  Google Scholar

[3]

N. Bagheri, M. Shiina, D. A. Lauffenburger and W. M. Korn, A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by MEK-inhibition,, PLoS Comput. Biol., 7 (2011).  doi: 10.1371/journal.pcbi.1001085.  Google Scholar

[4]

Z. Bajzer, T. Carr, K. Josić, S. J. Russell and D. Dingli, Modeling of cancer virotherapy with recombinant measles viruses,, J. Theor. Biol., 252 (2008), 109.  doi: 10.1016/j.jtbi.2008.01.016.  Google Scholar

[5]

M. Biesecker, J. H. Kimn, H. Lu, D. Dingli and Z. Bajzer, Optimization of virotherapy for cancer,, Bull. Math. Biol., 72 (2010), 469.  doi: 10.1007/s11538-009-9456-0.  Google Scholar

[6]

D. M. Catron, A. A. Itano, K. A. Pape, D. L. Mueller and M. K. Jenkins, Visualizing the first 50 hr of the primary immune response to a soluble antigen,, Immunity, 21 (2004), 341.  doi: 10.1016/j.immuni.2004.08.007.  Google Scholar

[7]

Y. Chen, T. DeWeese, J. Dilley, Y. Zhang, Y. Li, N. Ramesh, J. Lee, R. Pennathur-Das, J. Radzyminski, J. Wypych, D. Brignetti, S. Scott, J. Stephens, D. B. Karpf, D. R. Henderson and D. C. Yu, CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity,, Cancer Res., 61 (2001), 5453.   Google Scholar

[8]

R. J. De Boer, M. Oprea, R. Antia, K. Murali-Krishna, R. Ahmed and A. S. Perelson, Recruitment times, proliferation, and apoptosis rates during the CD8(+) T-cell response to lymphocytic choriomeningitis virus,, J. Virol., 75 (2001), 10663.   Google Scholar

[9]

L. de Pillis, A. Gallegos and A. Radunskaya, A model of dendritic cell therapy for melanoma,, Front Oncol, 3 (2013).   Google Scholar

[10]

L. G. de Pillis, A. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth,, Cancer Res., 67 (2007).  doi: 10.1158/0008-5472.CAN-07-1403.  Google Scholar

[11]

M. Del Vecchio, E. Bajetta, S. Canova, M. T. Lotze, A. Wesa, G. Parmiani and A. Anichini, Interleukin-12: Biological properties and clinical application,, Clin. Cancer Res., 13 (2007), 4677.  doi: 10.1158/1078-0432.CCR-07-0776.  Google Scholar

[12]

D. Dingli, C. Offord, R. Myers, K. W. Peng, T. W. Carr, K. Josic, S. J. Russell and Z. Bajzer, Dynamics of multiple myeloma tumor therapy with a recombinant measles virus,, Cancer Gene Ther., 16 (2009), 873.  doi: 10.1038/cgt.2009.40.  Google Scholar

[13]

R. M. Eager and J. Nemunaitis, Clinical development directions in oncolytic viral therapy,, Cancer Gene Ther., 18 (2011), 305.  doi: 10.1038/cgt.2011.7.  Google Scholar

[14]

R. Eftimie, J. L. Bramson and D. J. Earn, Interactions between the immune system and cancer: A brief review of non-spatial mathematical models,, Bull. Math. Biol., 73 (2011), 2.  doi: 10.1007/s11538-010-9526-3.  Google Scholar

[15]

N. B. Elsedawy and S. J. Russell, Oncolytic vaccines,, Expert Rev Vaccines, 12 (2013), 1155.  doi: 10.1586/14760584.2013.836912.  Google Scholar

[16]

A. Friedman, J. P. Tian, G. Fulci, E. A. Chiocca and J. Wang, Glioma virotherapy: Effects of innate immune suppression and increased viral replication capacity,, Cancer Res., 66 (2006), 2314.  doi: 10.1158/0008-5472.CAN-05-2661.  Google Scholar

[17]

I. Ganly, V. Mautner and A. Balmain, Productive replication of human adenoviruses in mouse epidermal cells,, J. Virol., 74 (2000), 2895.  doi: 10.1128/JVI.74.6.2895-2899.2000.  Google Scholar

[18]

J. H. Huang, S. N. Zhang, K. J. Choi, I. K. Choi, J. H. Kim, M. G. Lee, M. Lee, H. Kim and C. O. Yun, Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4-1BBL,, Mol. Ther., 18 (2010), 264.  doi: 10.1038/mt.2009.205.  Google Scholar

[19]

C. Jogler, D. Hoffmann, D. Theegarten, T. Grunwald, K. Uberla and O. Wildner, Replication properties of human adenovirus in vivo and in cultures of primary cells from different animal species,, J. Virol., 80 (2006), 3549.  doi: 10.1128/JVI.80.7.3549-3558.2006.  Google Scholar

[20]

P. H. Kim, T. I. Kim, J. W. Yockman, S. W. Kim and C. O. Yun, The effect of surface modification of adenovirus with an arginine-grafted bioreducible polymer on transduction efficiency and immunogenicity in cancer gene therapy,, Biomaterials, 31 (2010), 1865.  doi: 10.1016/j.biomaterials.2009.11.043.  Google Scholar

[21]

P. H. Kim, J. H. Sohn, J. W. Choi, Y. Jung, S. W. Kim, S. Haam and C. O. Yun, Active targeting and safety profile of PEG-modified adenovirus conjugated with herceptin,, Biomaterials, 32 (2011), 2314.  doi: 10.1016/j.biomaterials.2010.10.031.  Google Scholar

[22]

P. S. Kim, J. J. Crivelli, I. K. Choi, C. O. Yun and J. R. Wares, Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics,, (submitted)., ().   Google Scholar

[23]

D. Kirn, R. L. Martuza and J. Zwiebel, Replication-selective virotherapy for cancer: Biological principles, risk management and future directions,, Nat. Med., 7 (2001), 781.   Google Scholar

[24]

N. L. Komarova and D. Wodarz, ODE models for oncolytic virus dynamics,, J. Theor. Biol., 263 (2010), 530.  doi: 10.1016/j.jtbi.2010.01.009.  Google Scholar

[25]

N. Kronik, Y. Kogan, M. Elishmereni, K. Halevi-Tobias, S. Vuk-Pavlović and Z. Agur, Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models,, PLoS ONE, 5 (2010).  doi: 10.1371/journal.pone.0015482.  Google Scholar

[26]

F. Le Bœuf, C. Batenchuk, M. Vähä-Koskela, S. Breton, D. Roy, C. Lemay, J. Cox, H. Abdelbary, T. Falls, G. Waghray, H. Atkins, D. Stojdl, J. S. Diallo, M. Kærn and J. C. Bell, Model-based rational design of an oncolytic virus with improved therapeutic potential,, Nat Commun, 4 (2013).   Google Scholar

[27]

F. Le Bœuf, J. S. Diallo, J. A. McCart, S. Thorne, T. Falls, M. Stanford, F. Kanji, R. Auer, C. W. Brown, B. D. Lichty, K. Parato, H. Atkins, D. Kirn and J. C. Bell, Synergistic interaction between oncolytic viruses augments tumor killing,, Mol. Ther., 18 (2010), 888.   Google Scholar

[28]

H. L. Li, S. Li, J. Y. Shao, X. B. Lin, Y. Cao, W. Q. Jiang, R. Y. Liu, P. Zhao, X. F. Zhu, M. S. Zeng, Z. Z. Guan and W. Huang, Pharmacokinetic and pharmacodynamic study of intratumoral injection of an adenovirus encoding endostatin in patients with advanced tumors,, Gene Ther., 15 (2008), 247.  doi: 10.1038/sj.gt.3303038.  Google Scholar

[29]

D. G. Mallet and L. G. De Pillis, A cellular automata model of tumor-immune system interactions,, J. Theor. Biol., 239 (2006), 334.  doi: 10.1016/j.jtbi.2005.08.002.  Google Scholar

[30]

A. Melcher, K. Parato, C. M. Rooney and J. C. Bell, Thunder and lightning: Immunotherapy and oncolytic viruses collide,, Mol. Ther., 19 (2011), 1008.  doi: 10.1038/mt.2011.65.  Google Scholar

[31]

T. S. Miest and R. Cattaneo, New viruses for cancer therapy: Meeting clinical needs,, Nat. Rev. Microbiol., 12 (2014), 23.  doi: 10.1038/nrmicro3140.  Google Scholar

[32]

W. Mok, T. Stylianopoulos, Y. Boucher and R. K. Jain, Mathematical modeling of herpes simplex virus distribution in solid tumors: implications for cancer gene therapy,, Clin. Cancer Res., 15 (2009), 2352.  doi: 10.1158/1078-0432.CCR-08-2082.  Google Scholar

[33]

F. Pappalardo, M. Pennisi, A. Ricupito, F. Topputo and M. Bellone, Induction of T-cell memory by a dendritic cell vaccine: A computational model,, Bioinformatics, 30 (2014), 1884.  doi: 10.1093/bioinformatics/btu059.  Google Scholar

[34]

M. Robertson-Tessi, A. El-Kareh and A. Goriely, A mathematical model of tumor-immune interactions,, J. Theor. Biol., 294 (2012), 56.  doi: 10.1016/j.jtbi.2011.10.027.  Google Scholar

[35]

D. M. Rommelfanger, C. P. Offord, J. Dev, Z. Bajzer, R. G. Vile and D. Dingli, Dynamics of melanoma tumor therapy with vesicular stomatitis virus: Explaining the variability in outcomes using mathematical modeling,, Gene Ther., 19 (2012), 543.  doi: 10.1038/gt.2011.132.  Google Scholar

[36]

S. J. Russell, K. W. Peng and J. C. Bell, Oncolytic virotherapy,, Nat. Biotechnol., 30 (2012), 658.  doi: 10.1038/nbt.2287.  Google Scholar

[37]

J. R. Tysome, X. Li, S. Wang, P. Wang, D. Gao, P. Du, D. Chen, R. Gangeswaran, L. S. Chard, M. Yuan, G. Alusi, N. R. Lemoine and Y. Wang, A novel therapeutic regimen to eradicate established solid tumors with an effective induction of tumor-specific immunity,, Clin. Cancer Res., 18 (2012), 6679.  doi: 10.1158/1078-0432.CCR-12-0979.  Google Scholar

[38]

M. J. van Stipdonk, E. E. Lemmens and S. P. Schoenberger, Naïve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation,, Nat Immunol., 2 (2001), 423.   Google Scholar

[39]

H. Veiga-Fernandes, U. Walter, C. Bourgeois, A. McLean and B. Rocha, Response of naïve and memory CD8+ T cells to antigen stimulation in vivo,, Nat Immunol., 1 (2000), 47.   Google Scholar

[40]

Y. Wang, H. Wang, C. Y. Li and F. Yuan, Effects of rate, volume, and dose of intratumoral infusion on virus dissemination in local gene delivery,, Mol. Cancer Ther., 5 (2006), 362.  doi: 10.1158/1535-7163.MCT-05-0266.  Google Scholar

[41]

D. Wodarz, Viruses as antitumor weapons: defining conditions for tumor remission,, Cancer Res., 61 (2001), 3501.   Google Scholar

[42]

D. Wodarz, Computational modeling approaches to studying the dynamics of oncolytic viruses,, Math Biosci Eng, 10 (2013), 939.  doi: 10.3934/mbe.2013.10.939.  Google Scholar

[43]

D. Wodarz and N. Komarova, Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection,, PLoS ONE, 4 (2009).  doi: 10.1371/journal.pone.0004271.  Google Scholar

[44]

S. Worgall, G. Wolff, E. Falck-Pedersen and R. G. Crystal, Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration,, Hum. Gene Ther., 8 (1997), 37.   Google Scholar

[45]

J. T. Wu, D. H. Kirn and L. M. Wein, Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response,, Bull. Math. Biol., 66 (2004), 605.  doi: 10.1016/j.bulm.2003.08.016.  Google Scholar

[46]

M. Zeyaullah, M. Patro, I. Ahmad, K. Ibraheem, P. Sultan, M. Nehal and A. Ali, Oncolytic viruses in the treatment of cancer: A review of current strategies,, Pathol. Oncol. Res., 18 (2012), 771.  doi: 10.1007/s12253-012-9548-2.  Google Scholar

[47]

W. Zhang, G. Fulci, H. Wakimoto, T. A. Cheema, J. S. Buhrman, D. S. Jeyaretna, A. O. Stemmer Rachamimov, S. D. Rabkin and R. L. Martuza, Combination of oncolytic herpes simplex viruses armed with angiostatin and IL-12 enhances antitumor efficacy in human glioblastoma models,, Neoplasia, 15 (2013), 591.  doi: 10.1593/neo.13158.  Google Scholar

show all references

References:
[1]

J. W. Ady, J. Heffner, K. Mojica, C. Johnsen, L. J. Belin, D. Love, C. T. Chen, A. Pugalenthi, E. Klein, N. G. Chen, Y. A. Yu, A. A. Szalay and Y. Fong, Oncolytic immunotherapy using recombinant vaccinia virus GLV-1h68 kills sorafenib-resistant hepatocellular carcinoma efficiently,, Surgery, 156 (2014), 263.  doi: 10.1016/j.surg.2014.03.031.  Google Scholar

[2]

T. Alarcón, H. M. Byrne and P. K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment,, J. Theor. Biol., 225 (2003), 257.  doi: 10.1016/S0022-5193(03)00244-3.  Google Scholar

[3]

N. Bagheri, M. Shiina, D. A. Lauffenburger and W. M. Korn, A dynamical systems model for combinatorial cancer therapy enhances oncolytic adenovirus efficacy by MEK-inhibition,, PLoS Comput. Biol., 7 (2011).  doi: 10.1371/journal.pcbi.1001085.  Google Scholar

[4]

Z. Bajzer, T. Carr, K. Josić, S. J. Russell and D. Dingli, Modeling of cancer virotherapy with recombinant measles viruses,, J. Theor. Biol., 252 (2008), 109.  doi: 10.1016/j.jtbi.2008.01.016.  Google Scholar

[5]

M. Biesecker, J. H. Kimn, H. Lu, D. Dingli and Z. Bajzer, Optimization of virotherapy for cancer,, Bull. Math. Biol., 72 (2010), 469.  doi: 10.1007/s11538-009-9456-0.  Google Scholar

[6]

D. M. Catron, A. A. Itano, K. A. Pape, D. L. Mueller and M. K. Jenkins, Visualizing the first 50 hr of the primary immune response to a soluble antigen,, Immunity, 21 (2004), 341.  doi: 10.1016/j.immuni.2004.08.007.  Google Scholar

[7]

Y. Chen, T. DeWeese, J. Dilley, Y. Zhang, Y. Li, N. Ramesh, J. Lee, R. Pennathur-Das, J. Radzyminski, J. Wypych, D. Brignetti, S. Scott, J. Stephens, D. B. Karpf, D. R. Henderson and D. C. Yu, CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity,, Cancer Res., 61 (2001), 5453.   Google Scholar

[8]

R. J. De Boer, M. Oprea, R. Antia, K. Murali-Krishna, R. Ahmed and A. S. Perelson, Recruitment times, proliferation, and apoptosis rates during the CD8(+) T-cell response to lymphocytic choriomeningitis virus,, J. Virol., 75 (2001), 10663.   Google Scholar

[9]

L. de Pillis, A. Gallegos and A. Radunskaya, A model of dendritic cell therapy for melanoma,, Front Oncol, 3 (2013).   Google Scholar

[10]

L. G. de Pillis, A. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth,, Cancer Res., 67 (2007).  doi: 10.1158/0008-5472.CAN-07-1403.  Google Scholar

[11]

M. Del Vecchio, E. Bajetta, S. Canova, M. T. Lotze, A. Wesa, G. Parmiani and A. Anichini, Interleukin-12: Biological properties and clinical application,, Clin. Cancer Res., 13 (2007), 4677.  doi: 10.1158/1078-0432.CCR-07-0776.  Google Scholar

[12]

D. Dingli, C. Offord, R. Myers, K. W. Peng, T. W. Carr, K. Josic, S. J. Russell and Z. Bajzer, Dynamics of multiple myeloma tumor therapy with a recombinant measles virus,, Cancer Gene Ther., 16 (2009), 873.  doi: 10.1038/cgt.2009.40.  Google Scholar

[13]

R. M. Eager and J. Nemunaitis, Clinical development directions in oncolytic viral therapy,, Cancer Gene Ther., 18 (2011), 305.  doi: 10.1038/cgt.2011.7.  Google Scholar

[14]

R. Eftimie, J. L. Bramson and D. J. Earn, Interactions between the immune system and cancer: A brief review of non-spatial mathematical models,, Bull. Math. Biol., 73 (2011), 2.  doi: 10.1007/s11538-010-9526-3.  Google Scholar

[15]

N. B. Elsedawy and S. J. Russell, Oncolytic vaccines,, Expert Rev Vaccines, 12 (2013), 1155.  doi: 10.1586/14760584.2013.836912.  Google Scholar

[16]

A. Friedman, J. P. Tian, G. Fulci, E. A. Chiocca and J. Wang, Glioma virotherapy: Effects of innate immune suppression and increased viral replication capacity,, Cancer Res., 66 (2006), 2314.  doi: 10.1158/0008-5472.CAN-05-2661.  Google Scholar

[17]

I. Ganly, V. Mautner and A. Balmain, Productive replication of human adenoviruses in mouse epidermal cells,, J. Virol., 74 (2000), 2895.  doi: 10.1128/JVI.74.6.2895-2899.2000.  Google Scholar

[18]

J. H. Huang, S. N. Zhang, K. J. Choi, I. K. Choi, J. H. Kim, M. G. Lee, M. Lee, H. Kim and C. O. Yun, Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4-1BBL,, Mol. Ther., 18 (2010), 264.  doi: 10.1038/mt.2009.205.  Google Scholar

[19]

C. Jogler, D. Hoffmann, D. Theegarten, T. Grunwald, K. Uberla and O. Wildner, Replication properties of human adenovirus in vivo and in cultures of primary cells from different animal species,, J. Virol., 80 (2006), 3549.  doi: 10.1128/JVI.80.7.3549-3558.2006.  Google Scholar

[20]

P. H. Kim, T. I. Kim, J. W. Yockman, S. W. Kim and C. O. Yun, The effect of surface modification of adenovirus with an arginine-grafted bioreducible polymer on transduction efficiency and immunogenicity in cancer gene therapy,, Biomaterials, 31 (2010), 1865.  doi: 10.1016/j.biomaterials.2009.11.043.  Google Scholar

[21]

P. H. Kim, J. H. Sohn, J. W. Choi, Y. Jung, S. W. Kim, S. Haam and C. O. Yun, Active targeting and safety profile of PEG-modified adenovirus conjugated with herceptin,, Biomaterials, 32 (2011), 2314.  doi: 10.1016/j.biomaterials.2010.10.031.  Google Scholar

[22]

P. S. Kim, J. J. Crivelli, I. K. Choi, C. O. Yun and J. R. Wares, Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics,, (submitted)., ().   Google Scholar

[23]

D. Kirn, R. L. Martuza and J. Zwiebel, Replication-selective virotherapy for cancer: Biological principles, risk management and future directions,, Nat. Med., 7 (2001), 781.   Google Scholar

[24]

N. L. Komarova and D. Wodarz, ODE models for oncolytic virus dynamics,, J. Theor. Biol., 263 (2010), 530.  doi: 10.1016/j.jtbi.2010.01.009.  Google Scholar

[25]

N. Kronik, Y. Kogan, M. Elishmereni, K. Halevi-Tobias, S. Vuk-Pavlović and Z. Agur, Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models,, PLoS ONE, 5 (2010).  doi: 10.1371/journal.pone.0015482.  Google Scholar

[26]

F. Le Bœuf, C. Batenchuk, M. Vähä-Koskela, S. Breton, D. Roy, C. Lemay, J. Cox, H. Abdelbary, T. Falls, G. Waghray, H. Atkins, D. Stojdl, J. S. Diallo, M. Kærn and J. C. Bell, Model-based rational design of an oncolytic virus with improved therapeutic potential,, Nat Commun, 4 (2013).   Google Scholar

[27]

F. Le Bœuf, J. S. Diallo, J. A. McCart, S. Thorne, T. Falls, M. Stanford, F. Kanji, R. Auer, C. W. Brown, B. D. Lichty, K. Parato, H. Atkins, D. Kirn and J. C. Bell, Synergistic interaction between oncolytic viruses augments tumor killing,, Mol. Ther., 18 (2010), 888.   Google Scholar

[28]

H. L. Li, S. Li, J. Y. Shao, X. B. Lin, Y. Cao, W. Q. Jiang, R. Y. Liu, P. Zhao, X. F. Zhu, M. S. Zeng, Z. Z. Guan and W. Huang, Pharmacokinetic and pharmacodynamic study of intratumoral injection of an adenovirus encoding endostatin in patients with advanced tumors,, Gene Ther., 15 (2008), 247.  doi: 10.1038/sj.gt.3303038.  Google Scholar

[29]

D. G. Mallet and L. G. De Pillis, A cellular automata model of tumor-immune system interactions,, J. Theor. Biol., 239 (2006), 334.  doi: 10.1016/j.jtbi.2005.08.002.  Google Scholar

[30]

A. Melcher, K. Parato, C. M. Rooney and J. C. Bell, Thunder and lightning: Immunotherapy and oncolytic viruses collide,, Mol. Ther., 19 (2011), 1008.  doi: 10.1038/mt.2011.65.  Google Scholar

[31]

T. S. Miest and R. Cattaneo, New viruses for cancer therapy: Meeting clinical needs,, Nat. Rev. Microbiol., 12 (2014), 23.  doi: 10.1038/nrmicro3140.  Google Scholar

[32]

W. Mok, T. Stylianopoulos, Y. Boucher and R. K. Jain, Mathematical modeling of herpes simplex virus distribution in solid tumors: implications for cancer gene therapy,, Clin. Cancer Res., 15 (2009), 2352.  doi: 10.1158/1078-0432.CCR-08-2082.  Google Scholar

[33]

F. Pappalardo, M. Pennisi, A. Ricupito, F. Topputo and M. Bellone, Induction of T-cell memory by a dendritic cell vaccine: A computational model,, Bioinformatics, 30 (2014), 1884.  doi: 10.1093/bioinformatics/btu059.  Google Scholar

[34]

M. Robertson-Tessi, A. El-Kareh and A. Goriely, A mathematical model of tumor-immune interactions,, J. Theor. Biol., 294 (2012), 56.  doi: 10.1016/j.jtbi.2011.10.027.  Google Scholar

[35]

D. M. Rommelfanger, C. P. Offord, J. Dev, Z. Bajzer, R. G. Vile and D. Dingli, Dynamics of melanoma tumor therapy with vesicular stomatitis virus: Explaining the variability in outcomes using mathematical modeling,, Gene Ther., 19 (2012), 543.  doi: 10.1038/gt.2011.132.  Google Scholar

[36]

S. J. Russell, K. W. Peng and J. C. Bell, Oncolytic virotherapy,, Nat. Biotechnol., 30 (2012), 658.  doi: 10.1038/nbt.2287.  Google Scholar

[37]

J. R. Tysome, X. Li, S. Wang, P. Wang, D. Gao, P. Du, D. Chen, R. Gangeswaran, L. S. Chard, M. Yuan, G. Alusi, N. R. Lemoine and Y. Wang, A novel therapeutic regimen to eradicate established solid tumors with an effective induction of tumor-specific immunity,, Clin. Cancer Res., 18 (2012), 6679.  doi: 10.1158/1078-0432.CCR-12-0979.  Google Scholar

[38]

M. J. van Stipdonk, E. E. Lemmens and S. P. Schoenberger, Naïve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation,, Nat Immunol., 2 (2001), 423.   Google Scholar

[39]

H. Veiga-Fernandes, U. Walter, C. Bourgeois, A. McLean and B. Rocha, Response of naïve and memory CD8+ T cells to antigen stimulation in vivo,, Nat Immunol., 1 (2000), 47.   Google Scholar

[40]

Y. Wang, H. Wang, C. Y. Li and F. Yuan, Effects of rate, volume, and dose of intratumoral infusion on virus dissemination in local gene delivery,, Mol. Cancer Ther., 5 (2006), 362.  doi: 10.1158/1535-7163.MCT-05-0266.  Google Scholar

[41]

D. Wodarz, Viruses as antitumor weapons: defining conditions for tumor remission,, Cancer Res., 61 (2001), 3501.   Google Scholar

[42]

D. Wodarz, Computational modeling approaches to studying the dynamics of oncolytic viruses,, Math Biosci Eng, 10 (2013), 939.  doi: 10.3934/mbe.2013.10.939.  Google Scholar

[43]

D. Wodarz and N. Komarova, Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection,, PLoS ONE, 4 (2009).  doi: 10.1371/journal.pone.0004271.  Google Scholar

[44]

S. Worgall, G. Wolff, E. Falck-Pedersen and R. G. Crystal, Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration,, Hum. Gene Ther., 8 (1997), 37.   Google Scholar

[45]

J. T. Wu, D. H. Kirn and L. M. Wein, Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response,, Bull. Math. Biol., 66 (2004), 605.  doi: 10.1016/j.bulm.2003.08.016.  Google Scholar

[46]

M. Zeyaullah, M. Patro, I. Ahmad, K. Ibraheem, P. Sultan, M. Nehal and A. Ali, Oncolytic viruses in the treatment of cancer: A review of current strategies,, Pathol. Oncol. Res., 18 (2012), 771.  doi: 10.1007/s12253-012-9548-2.  Google Scholar

[47]

W. Zhang, G. Fulci, H. Wakimoto, T. A. Cheema, J. S. Buhrman, D. S. Jeyaretna, A. O. Stemmer Rachamimov, S. D. Rabkin and R. L. Martuza, Combination of oncolytic herpes simplex viruses armed with angiostatin and IL-12 enhances antitumor efficacy in human glioblastoma models,, Neoplasia, 15 (2013), 591.  doi: 10.1593/neo.13158.  Google Scholar

[1]

Zizi Wang, Zhiming Guo, Huaqin Peng. Dynamical behavior of a new oncolytic virotherapy model based on gene variation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1079-1093. doi: 10.3934/dcdss.2017058

[2]

Joseph Malinzi, Rachid Ouifki, Amina Eladdadi, Delfim F. M. Torres, K. A. Jane White. Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1435-1463. doi: 10.3934/mbe.2018066

[3]

Elzbieta Ratajczyk, Urszula Ledzewicz, Maciej Leszczynski, Avner Friedman. The role of TNF-α inhibitor in glioma virotherapy: A mathematical model. Mathematical Biosciences & Engineering, 2017, 14 (1) : 305-319. doi: 10.3934/mbe.2017020

[4]

Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche. Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences & Engineering, 2009, 6 (2) : 333-362. doi: 10.3934/mbe.2009.6.333

[5]

Daniel Vasiliu, Jianjun Paul Tian. Periodic solutions of a model for tumor virotherapy. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1587-1597. doi: 10.3934/dcdss.2011.4.1587

[6]

Jianjun Paul Tian. The replicability of oncolytic virus: Defining conditions in tumor virotherapy. Mathematical Biosciences & Engineering, 2011, 8 (3) : 841-860. doi: 10.3934/mbe.2011.8.841

[7]

Marcello Delitala, Tommaso Lorenzi. Emergence of spatial patterns in a mathematical model for the co-culture dynamics of epithelial-like and mesenchymal-like cells. Mathematical Biosciences & Engineering, 2017, 14 (1) : 79-93. doi: 10.3934/mbe.2017006

[8]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[9]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[10]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[11]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[12]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems & Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[13]

Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565

[14]

Laura Fumanelli, Pierre Magal, Dongmei Xiao, Xiao Yu. Qualitative analysis of a model for co-culture of bacteria and amoebae. Mathematical Biosciences & Engineering, 2012, 9 (2) : 259-279. doi: 10.3934/mbe.2012.9.259

[15]

Georgi Kapitanov. A double age-structured model of the co-infection of tuberculosis and HIV. Mathematical Biosciences & Engineering, 2015, 12 (1) : 23-40. doi: 10.3934/mbe.2015.12.23

[16]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[17]

Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

[18]

Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040

[19]

Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control & Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517

[20]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

[Back to Top]