Citation: |
[1] |
N. André, M. Carré and E. Pasquier, Metronomics: Towards personalized chemotherapy?, Nature Reviews Clinical Oncology, 11 (2014), 413-431. |
[2] |
N. André, L. Padovani and E. Pasquier, Metronomic scheduling of anticancer treatment: The next generation of multitarget therapy? Future Oncology, 7 (2011), 385-394. |
[3] |
S. Benzekry, N. André, A. Benabdallah, J. Ciccolini, C. Faivre, F. Hubert and D. Barbolosi, Modeling the impact of anticancer agents on metastatic spreading, Mathematical Modeling of Natural Phenomena, 7 (2012), 306-336.doi: 10.1051/mmnp/20127114. |
[4] |
S. Benzekry and P. Hahnfeldt, Maximum tolerated dose versus metronomic scheduling in the treatment of metastatic cancers, J. Theoretical Biology, 335 (2013), 235-244.doi: 10.1016/j.jtbi.2013.06.036. |
[5] |
G. Bocci, K. Nicolaou and R. S. Kerbel, Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs, Cancer Research, 62 (2002), 6938-6943. |
[6] |
B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory, Springer Verlag, Series: Mathematics and Applications, 2003. |
[7] |
A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, American Institute of Mathematical Sciences, Springfield, Mo, 2007. |
[8] |
T. Browder, C. E. Butterfield, B. M. Kräling, B. Shi, B. Marshall, M. S. O'Reilly and J. Folkman, Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer, Cancer Research, 60 (2000), 1878-1886. |
[9] |
B. I. Camara, H. Mokrani and E. Afenya, Mathematical modeling of glioma therapy using oncolytic viruses, Mathematical Biosciences and Engineering-MBE, 10 (2013), 565-578.doi: 10.3934/mbe.2013.10.565. |
[10] |
L. Cesari, Optimization - Theory and Applications, Springer, New York, 1983.doi: 10.1007/978-1-4613-8165-5. |
[11] |
U. Forys, Y. Keifetz and Y. Kogan, Critical-point analysis for three-variable cancer angiogenesis models, Mathematical Biosciences and Engineering, 2 (2005), 511-525.doi: 10.3934/mbe.2005.2.511. |
[12] |
U. Forys, J. Waniewski and P. Zhivkov, Anti-tumor immunity and tumor anti-immunity in a mathematical model of tumor immunotherapy, J. of Biological Systems, 14 (2006), 13-30. |
[13] |
R. A. Gatenby, A. S. Silva, R. J. Gillies and B. R. Frieden, Adaptive therapy, Cancer Research, 69 (2009), 4894-4903.doi: 10.1158/0008-5472.CAN-08-3658. |
[14] |
E. V. Grigorieva, E. N. Khailov, N. Bondarenko and A. Korobeinikov, Modeling and optimal control for antiretroviral therapy, J. of Biological Systems, 22 (2014), 199-217.doi: 10.1142/S0218339014400026. |
[15] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer Verlag, New York, 1983.doi: 10.1007/978-1-4612-1140-2. |
[16] |
P. Hahnfeldt, J. Folkman and L. Hlatky, Minimizing long-term burden: The logic for metronomic chemotherapeutic dosing and its angiogenic basis, J. of Theoretical Biology, 220 (2003), 545-554.doi: 10.1006/jtbi.2003.3162. |
[17] |
P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Research, 59 (1999), 4770-4775. |
[18] |
D. Hanahan, G. Bergers and E. Bergsland, Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice, J. Clinical Investigations, 105 (2000), 1045-1047.doi: 10.1172/JCI9872. |
[19] |
Y. B. Hao, S. Y. Yi, J. Ruan, L. Zhao and K. J. Nan, New insights into metronomic chemotherapy-induced immunoregulation, Cancer Letters, 354 (2014), 220-226.doi: 10.1016/j.canlet.2014.08.028. |
[20] |
B. Kamen, E. Rubin, J. Aisner and E. Glatstein, High-time chemotherapy or high time for low dose?, J. Clinical Oncology, 18 (2000), 2935-2937. |
[21] |
Y. Kim and A. Friedman, Interaction of tumor with its microenvironment: A mathematical model, Bulletin of Mathematical Biology, 72 (2010), 1029-1068.doi: 10.1007/s11538-009-9481-z. |
[22] |
G. Klement, S. Baruchel, J. Rak, S. Man, K. Clark, D. J. Hicklin, P. Bohlen and R. S. Kerbel, Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity, J. Clinical Investigations, 105 (2000), R15-R24. |
[23] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bulletin of Mathematical Biology, 56 (1994), 295-321. |
[24] |
U. Ledzewicz, M. Naghnaeian and H. Schättler, Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics, J. of Mathematical Biology, 64 (2012), 557-577.doi: 10.1007/s00285-011-0424-6. |
[25] |
U. Ledzewicz, O. Olumoye and H. Schättler, On optimal chemotherapy with a stongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth, Mathematical Biosciences and Engineering - MBE, 10 (2013), 787-802.doi: 10.3934/mbe.2013.10.787. |
[26] |
U. Ledzewicz and H. Schättler, Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy, J. of Optimization Theory and Applications - JOTA, 114 (2002), 609-637.doi: 10.1023/A:1016027113579. |
[27] |
U. Ledzewicz and H. Schättler, Analysis of a cell-cycle specific model for cancer chemotherapy, J. of Biological Systems, 10 (2002), 183-206.doi: 10.1142/S0218339002000597. |
[28] |
U. Ledzewicz and H. Schättler, Drug resistance in cancer chemotherapy as an optimal control problem, Discrete and Continuous Dynamical Systems, Series B, 6 (2006), 129-150. |
[29] |
U. Ledzewicz and H. Schättler, Anti-angiogenic therapy in cancer treatment as an optimal control problem, SIAM J. on Control and Optimization, 46 (2007), 1052-1079.doi: 10.1137/060665294. |
[30] |
U. Ledzewicz and H. Schättler, A review of optimal chemotherapy protocols: From MTD towards metronomic therapy, Mathematical Modeling of Natural Phenomena, 9 (2014), 131-152.doi: 10.1051/mmnp/20149409. |
[31] |
U. Ledzewicz and H. Schättler, On optimal chemotherapy for heterogeneous tumors, J. of Biological Systems, 22 (2014), 177-197.doi: 10.1142/S0218339014400014. |
[32] |
U. Ledzewicz and H. Schättler, Tumor microenvironment and anticancer therapies: An optimal control approach, in Mathematical Oncology 2013 (eds. A. d'Onofrio and A. Gandolfi), Springer, (2014), 295-334.doi: 10.1007/978-1-4939-0458-7_10. |
[33] |
E. Pasquier, M. Kavallaris and N. André, Metronomic chemotherapy: new rationale for new directions, Nature Reviews|Clinical Oncology, 7 (2010), 455-465.doi: 10.1038/nrclinonc.2010.82. |
[34] |
E. Pasquier and U. Ledzewicz, Perspective on "More is not necessarily better'': Metronomic Chemotherapy, Newsletter of the Society for Mathematical Biology, 26 (2013), 9-10. |
[35] |
K. Pietras and D. Hanahan, A multi-targeted, metronomic and maximum tolerated dose "chemo-switch" regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer, J. of Clinical Oncology, 23 (2005), 939-952. |
[36] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, MacMillan, New York, 1964. |
[37] |
R. Retsky, Metronomic Chemotherapy was originally designed and first used in 1994 for early stage cancer - why is it taking so long to proceed?, Bioequivalence and Bioavailability, 3 (2011), p4.doi: 10.4172/jbb.100000e6. |
[38] |
H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples, Springer Verlag, 2012.doi: 10.1007/978-1-4614-3834-2. |
[39] |
H. Schättler, U. Ledzewicz and B. Amini, Dynamical properties of a minimally parameterized mathematical model for metronomic chemotherapy, J. of Mathematical Biology, published online June 19, 2015. |
[40] |
H. E. Skipper, On mathematical modeling of critical variables in cancer treatment (goals: better understanding of the past and better planning in the future), Bulletin of Mathematical Biology, 48 (1986), 253-278.doi: 10.1007/BF02459681. |
[41] |
N. V. Stepanova, Course of the immune reaction during the development of a malignant tumour, Biophysics, 24 (1980), 917-923. |
[42] |
J. B. Swann and M. J. Smyth, Immune surveillance of tumors, J. Clinical Investigations, 117 (2007), 1137-1146.doi: 10.1172/JCI31405. |
[43] |
G. W. Swan, Role of optimal control in cancer chemotherapy, Mathematical Biosciences, 101 (1990), 237-284.doi: 10.1016/0025-5564(90)90021-P. |
[44] |
A. Swierniak, Optimal treatment protocols in leukemia - modelling the proliferation cycle, IMACS Ann. Comput. Appl. Math., 5 (1989), 51-53. |
[45] |
A. Swierniak, Cell cycle as an object of control, J. of Biological Systems, 3 (1995), 41-54.doi: 10.1142/S0218339095000058. |
[46] |
A. Swierniak and J. Smieja, Cancer chemotherapy optimization under evolving drug resistance, Nonlinear Analysis, 47 (2001), 375-386.doi: 10.1016/S0362-546X(01)00184-5. |
[47] |
A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357-368. |
[48] |
H. P. de Vladar and J. A. González, Dynamic response of cancer under the influence of immunological activity and therapy, J. of Theoretical Biology, 227 (2004), 335-348.doi: 10.1016/j.jtbi.2003.11.012. |
[49] |
S. D. Weitman, E. Glatstein and B. A. Kamen, Back to the basics: the importance of concentration $\times$ time in oncology, J. of Clinical Oncology, 11 (1993), 820-821. |
[50] |
T. E. Wheldon, Mathematical Models in Cancer Research, Boston-Philadelphia: Hilger Publishing, 1988. |