2015, 12(6): 1277-1288. doi: 10.3934/mbe.2015.12.1277

Oncogene-tumor suppressor gene feedback interactions and their control

1. 

DiseasePathways LLC, Bethesda, Maryland, 20814, United States

2. 

Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis St., #02-01 Genome, 138672, Singapore

3. 

Department of Life Science & Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, China-Yi, Taiwan

Received  September 2014 Revised  March 2015 Published  August 2015

We propose the hypothesis that for a particular type of cancer there exists a key pair of oncogene (OCG) and tumor suppressor gene (TSG) that is normally involved in strong stabilizing negative feedback loops (nFBLs) of molecular interactions, and it is these interactions that are sufficiently perturbed during cancer development. These nFBLs are thought to regulate oncogenic positive feedback loops (pFBLs) that are often required for the normal cellular functions of oncogenes. Examples given in this paper are the pairs of MYC and p53, KRAS and INK4A, and E2F1 and miR-17-92. We propose dynamical models of the aforementioned OCG-TSG interactions and derive stability conditions of the steady states in terms of strengths of cycles in the qualitative interaction network. Although these conditions are restricted to predictions of local stability, their simple linear expressions in terms of competing nFBLs and pFBLs make them intuitive and practical guides for experimentalists aiming to discover drug targets and stabilize cancer networks.
Citation: Baltazar D. Aguda, Ricardo C.H. del Rosario, Michael W.Y. Chan. Oncogene-tumor suppressor gene feedback interactions and their control. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1277-1288. doi: 10.3934/mbe.2015.12.1277
References:
[1]

B. D. Aguda, Network pharmacology of glioblastoma,, Curr Drug Discov Technol., 10 (2013), 125.   Google Scholar

[2]

B. D. Aguda, The significance of the feedback loops between KRas and Ink4a in pancreatic cancer,, in Molecular Diagnostics and Therapy of Pancreatic Cancer (ed. A. Azmi), (2014), 281.  doi: 10.1016/B978-0-12-408103-1.00012-1.  Google Scholar

[3]

B. D. Aguda and A. B. Goryachev, From pathways databases to network models of switching behavior,, PLoS Comput Biol., 3 (2007), 1674.  doi: 10.1371/journal.pcbi.0030152.  Google Scholar

[4]

B. D. Aguda, Y. Kim, H. S. Kim, A. Friedman and H. A. Fine, Qualitative network modeling of the Myc-p53 control system of cell proliferation and differentiation,, Biophys J., 101 (2011), 2082.  doi: 10.1016/j.bpj.2011.09.052.  Google Scholar

[5]

B. D. Aguda, Y. Kim, M. G. Piper-Hunter, A. Friedman and C. B. Marsh, MicroRNA regulation of a cancer network: Consequences of the feedback loops involving miR-17-92, E2F and Myc,, Proc Natl Acad Sci USA, 105 (2008), 19678.  doi: 10.1073/pnas.0811166106.  Google Scholar

[6]

R. C. Bast, B. Henessy and G. B. Mills, Jr., The biology of ovarian cancer: New opportunities for translation,, Nat Rev Cancer, 9 (2009), 415.   Google Scholar

[7]

Cancer Genome Atlas Research Network, Comprehensive genomic characterization defines human glioblastoma genes and core pathways,, Nature, 494 (2013).  doi: 10.1038/nature11903.  Google Scholar

[8]

Cancer Genome Atlas Research Network, Comprehensive molecular profiling of lung adenocarcinoma,, Nature, 511 (2014), 543.   Google Scholar

[9]

W. A. Cooper, D. C. Lam, S. A. O'Toole and J. D. Minna, Molecular biology of lung cancer,, J Thorac Dis., 5 (2013).   Google Scholar

[10]

J. Daniluk, Y. Liu, D. Deng, J. Chu, H. Huang, S. Gaiser, Z. Cruz-Monserrate, H. Wang, B. Ji and C. D. Logsdon, An NF-$\kappa$B pathway-mediated positive feedback loop amplifies Ras activity to pathological levels in mice,, J Clin Invest., 122 (2012), 1519.   Google Scholar

[11]

A. Dhooge, W. Govaerts and Y. A. Kuznetsov, MATCONT: A Matlab package for numerical bifurcation analysis of ODEs,, ACM Trans Math Softw (TOMS), 29 (2003), 141.  doi: 10.1145/779359.779362.  Google Scholar

[12]

J. Drost and R. Agami, Transformation locked in a loop,, Cell, 139 (2009), 654.  doi: 10.1016/j.cell.2009.10.035.  Google Scholar

[13]

P. A. Futreal, L. Coin, M. Marshall, T. Down, T. Hubbard, R. Wooster, N. Rahman and M. R. Stratton, A census of human cancer genes,, Nat Rev Cancer, 4 (2004), 177.  doi: 10.1038/nrc1299.  Google Scholar

[14]

P. K. Ha, S. S. Chang, C. A. Glazer, J. A. Califano and D. Sidransky, Molecular techniques and genetic alterations in head and neck cancer,, Oral Oncol, 45 (2009), 335.  doi: 10.1016/j.oraloncology.2008.05.015.  Google Scholar

[15]

http://cancer.sanger.ac.uk/cancergenome/projects/census/" target="_blank"> Google Scholar

[16]

http://ncg.kcl.ac.uk, (network of cancer genes)., ().   Google Scholar

[17]

C. Kandoth, M. D. McLellan, F. Vandin, K. Ye, B. Niu, C. Lu, M. Xie, Q. Zhang, J. F. McMichael, M. A. Wyczalkowski, M. D. Leiserson, C. A. Miller, J. S. Welch, M. J. Walter, M. C. Wendl, T. J. Ley, R. K. Wilson, B. J. Raphael and L. Ding, Mutational landscape and significance across 12 major cancer types,, Nature, 502 (2013), 333.   Google Scholar

[18]

J. E. Larsen and J. D. Minna, Molecular biology of lung cancer: Clinical applications,, Clin Chest Med., 32 (2011), 703.  doi: 10.1016/j.ccm.2011.08.003.  Google Scholar

[19]

E. Y. Lee and W. J. Muller, Oncogenes and tumor suppressor genes,, Cold Spring Harb Perpect Biol., 2 (2010).  doi: 10.1101/cshperspect.a003236.  Google Scholar

[20]

Y. Li, Y. Li, H. Zhang and Y. Chen, MicroRNA-mediated positive feedback loop and optimized bistable switch in a cancer network involving miR-17-92,, PLoS One, 6 (2011).  doi: 10.1371/journal.pone.0026302.  Google Scholar

[21]

P. Liao, W. Wang, M. Shen, W. Pan, K. Zhang, R. Wang, T. Chen, Y. Chen, H. Chen and P. Wang, A positive feedback loop between EBP2 and c-Myc regulates rDNA transcription, cell proliferation, and tumorigenesis,, Cell Death Dis., 5 (2014).  doi: 10.1038/cddis.2013.536.  Google Scholar

[22]

L. Mao, W. K. Hong and V. A. Papadimitrakopoulou, Focus on head and neck cancer,, Cancer Cell, 5 (2004), 311.  doi: 10.1016/S1535-6108(04)00090-X.  Google Scholar

[23]

G. M. Marshall, P. Y. Liu, S. Gherardi, C. J. Scarlett, A. Bedalov, N. Xu, N. Iraci, E. Valli, D. Ling, W. Thomas, M. van Bekkum, E. Sekyere, K. Jankowski, T. Trahair, K. L. Mackenzie, M. Haber, M. D. Norris, A. V. Biankin, G. Perini and T. Liu, SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability,, PLoS Genet., 7 (2011).  doi: 10.1371/journal.pgen.1002135.  Google Scholar

[24]

K. Nowak, K. Kerl, D. Fehr, C. Kramps, C. Gessner, K. Killmer, B. Samans, B. Berwanger, H. Christiansen and W. Lutz, BMI1 is a target gene of E2F-1 and is strongly expressed in primary neuroblastomas,, Nucleic Acids Res., 34 (2006), 1745.  doi: 10.1093/nar/gkl119.  Google Scholar

[25]

B. Perez-Ordoñez, M. Beauchemin and R. C. Jordan, Molecular biology of squamous cell carcinoma of the head and neck,, J Clin Pathol., 59 (2006), 445.   Google Scholar

[26]

C. C. Pritchard and W. M. Grady, Colorectal cancer molecular biology moves into clinical practice,, Gut., 60 (2011), 116.  doi: 10.1136/gut.2009.206250.  Google Scholar

[27]

T. Santarius, J. Shipley, D. Brewer, M. R. Stratton and C. S. Cooper, A census of amplified and overexpressed human cancer genes,, Nat Rev Cancer, 10 (2010), 59.  doi: 10.1038/nrc2771.  Google Scholar

[28]

K. Tago, M. Funakoshi-Tago, H. Itoh, Y. Furukawa, J. Kikuchi, T. Kato, K. Suzuki and K. Yanagisawa, Arf tumor suppressor disrupts the oncogenic positive feedback loop including c-Myc and DDX5,, Oncogene, 34 (2015), 314.  doi: 10.1038/onc.2013.561.  Google Scholar

[29]

P. Takahashi, A. Polson and D. Reisman, Elevated transcription of the p53 gene in early S-phase leads to a rapid DNA-damage response during S-phase of the cell cycle,, Apoptosis, 16 (2011), 950.  doi: 10.1007/s10495-011-0623-z.  Google Scholar

[30]

D. Tamborero, A. Gonzalez-Perez, C. Perez-Llamas, J. Deu-Pons, C. Kandoth, J. Reimand, M. S. Lawrence, G. Getz, G. D. Bader, L. Ding and N. Lopez-Bigas, Comprehensive identification of mutational cancer driver genes across 12 tumor types,, Sci Rep., 3 (2013).  doi: 10.1038/srep02650.  Google Scholar

[31]

M. Vauhkonen, H. Vauhkonen and P. Sipponen, Pathology and molecular biology of gastric cancer,, Best Pract Res Clin Gastroenterol, 20 (2006), 651.  doi: 10.1016/j.bpg.2006.03.016.  Google Scholar

show all references

References:
[1]

B. D. Aguda, Network pharmacology of glioblastoma,, Curr Drug Discov Technol., 10 (2013), 125.   Google Scholar

[2]

B. D. Aguda, The significance of the feedback loops between KRas and Ink4a in pancreatic cancer,, in Molecular Diagnostics and Therapy of Pancreatic Cancer (ed. A. Azmi), (2014), 281.  doi: 10.1016/B978-0-12-408103-1.00012-1.  Google Scholar

[3]

B. D. Aguda and A. B. Goryachev, From pathways databases to network models of switching behavior,, PLoS Comput Biol., 3 (2007), 1674.  doi: 10.1371/journal.pcbi.0030152.  Google Scholar

[4]

B. D. Aguda, Y. Kim, H. S. Kim, A. Friedman and H. A. Fine, Qualitative network modeling of the Myc-p53 control system of cell proliferation and differentiation,, Biophys J., 101 (2011), 2082.  doi: 10.1016/j.bpj.2011.09.052.  Google Scholar

[5]

B. D. Aguda, Y. Kim, M. G. Piper-Hunter, A. Friedman and C. B. Marsh, MicroRNA regulation of a cancer network: Consequences of the feedback loops involving miR-17-92, E2F and Myc,, Proc Natl Acad Sci USA, 105 (2008), 19678.  doi: 10.1073/pnas.0811166106.  Google Scholar

[6]

R. C. Bast, B. Henessy and G. B. Mills, Jr., The biology of ovarian cancer: New opportunities for translation,, Nat Rev Cancer, 9 (2009), 415.   Google Scholar

[7]

Cancer Genome Atlas Research Network, Comprehensive genomic characterization defines human glioblastoma genes and core pathways,, Nature, 494 (2013).  doi: 10.1038/nature11903.  Google Scholar

[8]

Cancer Genome Atlas Research Network, Comprehensive molecular profiling of lung adenocarcinoma,, Nature, 511 (2014), 543.   Google Scholar

[9]

W. A. Cooper, D. C. Lam, S. A. O'Toole and J. D. Minna, Molecular biology of lung cancer,, J Thorac Dis., 5 (2013).   Google Scholar

[10]

J. Daniluk, Y. Liu, D. Deng, J. Chu, H. Huang, S. Gaiser, Z. Cruz-Monserrate, H. Wang, B. Ji and C. D. Logsdon, An NF-$\kappa$B pathway-mediated positive feedback loop amplifies Ras activity to pathological levels in mice,, J Clin Invest., 122 (2012), 1519.   Google Scholar

[11]

A. Dhooge, W. Govaerts and Y. A. Kuznetsov, MATCONT: A Matlab package for numerical bifurcation analysis of ODEs,, ACM Trans Math Softw (TOMS), 29 (2003), 141.  doi: 10.1145/779359.779362.  Google Scholar

[12]

J. Drost and R. Agami, Transformation locked in a loop,, Cell, 139 (2009), 654.  doi: 10.1016/j.cell.2009.10.035.  Google Scholar

[13]

P. A. Futreal, L. Coin, M. Marshall, T. Down, T. Hubbard, R. Wooster, N. Rahman and M. R. Stratton, A census of human cancer genes,, Nat Rev Cancer, 4 (2004), 177.  doi: 10.1038/nrc1299.  Google Scholar

[14]

P. K. Ha, S. S. Chang, C. A. Glazer, J. A. Califano and D. Sidransky, Molecular techniques and genetic alterations in head and neck cancer,, Oral Oncol, 45 (2009), 335.  doi: 10.1016/j.oraloncology.2008.05.015.  Google Scholar

[15]

http://cancer.sanger.ac.uk/cancergenome/projects/census/" target="_blank"> Google Scholar

[16]

http://ncg.kcl.ac.uk, (network of cancer genes)., ().   Google Scholar

[17]

C. Kandoth, M. D. McLellan, F. Vandin, K. Ye, B. Niu, C. Lu, M. Xie, Q. Zhang, J. F. McMichael, M. A. Wyczalkowski, M. D. Leiserson, C. A. Miller, J. S. Welch, M. J. Walter, M. C. Wendl, T. J. Ley, R. K. Wilson, B. J. Raphael and L. Ding, Mutational landscape and significance across 12 major cancer types,, Nature, 502 (2013), 333.   Google Scholar

[18]

J. E. Larsen and J. D. Minna, Molecular biology of lung cancer: Clinical applications,, Clin Chest Med., 32 (2011), 703.  doi: 10.1016/j.ccm.2011.08.003.  Google Scholar

[19]

E. Y. Lee and W. J. Muller, Oncogenes and tumor suppressor genes,, Cold Spring Harb Perpect Biol., 2 (2010).  doi: 10.1101/cshperspect.a003236.  Google Scholar

[20]

Y. Li, Y. Li, H. Zhang and Y. Chen, MicroRNA-mediated positive feedback loop and optimized bistable switch in a cancer network involving miR-17-92,, PLoS One, 6 (2011).  doi: 10.1371/journal.pone.0026302.  Google Scholar

[21]

P. Liao, W. Wang, M. Shen, W. Pan, K. Zhang, R. Wang, T. Chen, Y. Chen, H. Chen and P. Wang, A positive feedback loop between EBP2 and c-Myc regulates rDNA transcription, cell proliferation, and tumorigenesis,, Cell Death Dis., 5 (2014).  doi: 10.1038/cddis.2013.536.  Google Scholar

[22]

L. Mao, W. K. Hong and V. A. Papadimitrakopoulou, Focus on head and neck cancer,, Cancer Cell, 5 (2004), 311.  doi: 10.1016/S1535-6108(04)00090-X.  Google Scholar

[23]

G. M. Marshall, P. Y. Liu, S. Gherardi, C. J. Scarlett, A. Bedalov, N. Xu, N. Iraci, E. Valli, D. Ling, W. Thomas, M. van Bekkum, E. Sekyere, K. Jankowski, T. Trahair, K. L. Mackenzie, M. Haber, M. D. Norris, A. V. Biankin, G. Perini and T. Liu, SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability,, PLoS Genet., 7 (2011).  doi: 10.1371/journal.pgen.1002135.  Google Scholar

[24]

K. Nowak, K. Kerl, D. Fehr, C. Kramps, C. Gessner, K. Killmer, B. Samans, B. Berwanger, H. Christiansen and W. Lutz, BMI1 is a target gene of E2F-1 and is strongly expressed in primary neuroblastomas,, Nucleic Acids Res., 34 (2006), 1745.  doi: 10.1093/nar/gkl119.  Google Scholar

[25]

B. Perez-Ordoñez, M. Beauchemin and R. C. Jordan, Molecular biology of squamous cell carcinoma of the head and neck,, J Clin Pathol., 59 (2006), 445.   Google Scholar

[26]

C. C. Pritchard and W. M. Grady, Colorectal cancer molecular biology moves into clinical practice,, Gut., 60 (2011), 116.  doi: 10.1136/gut.2009.206250.  Google Scholar

[27]

T. Santarius, J. Shipley, D. Brewer, M. R. Stratton and C. S. Cooper, A census of amplified and overexpressed human cancer genes,, Nat Rev Cancer, 10 (2010), 59.  doi: 10.1038/nrc2771.  Google Scholar

[28]

K. Tago, M. Funakoshi-Tago, H. Itoh, Y. Furukawa, J. Kikuchi, T. Kato, K. Suzuki and K. Yanagisawa, Arf tumor suppressor disrupts the oncogenic positive feedback loop including c-Myc and DDX5,, Oncogene, 34 (2015), 314.  doi: 10.1038/onc.2013.561.  Google Scholar

[29]

P. Takahashi, A. Polson and D. Reisman, Elevated transcription of the p53 gene in early S-phase leads to a rapid DNA-damage response during S-phase of the cell cycle,, Apoptosis, 16 (2011), 950.  doi: 10.1007/s10495-011-0623-z.  Google Scholar

[30]

D. Tamborero, A. Gonzalez-Perez, C. Perez-Llamas, J. Deu-Pons, C. Kandoth, J. Reimand, M. S. Lawrence, G. Getz, G. D. Bader, L. Ding and N. Lopez-Bigas, Comprehensive identification of mutational cancer driver genes across 12 tumor types,, Sci Rep., 3 (2013).  doi: 10.1038/srep02650.  Google Scholar

[31]

M. Vauhkonen, H. Vauhkonen and P. Sipponen, Pathology and molecular biology of gastric cancer,, Best Pract Res Clin Gastroenterol, 20 (2006), 651.  doi: 10.1016/j.bpg.2006.03.016.  Google Scholar

[1]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[2]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[3]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[4]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[5]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[6]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[7]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[8]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[11]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[12]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[13]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[14]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[15]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[16]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[17]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[18]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (458)
  • HTML views (0)
  • Cited by (1)

[Back to Top]