2015, 12(6): 1303-1320. doi: 10.3934/mbe.2015.12.1303

The performance of discrete models of low reynolds number swimmers

1. 

Department of Mathematics, University of California Irvine, Irvine, CA, United States

2. 

School of Mathematics, University of Minnesota, Minneapolis, MN 55445

Received  September 2014 Revised  June 2015 Published  August 2015

Swimming by shape changes at low Reynolds number is widely used in biology and understanding how the performance of movement depends on the geometric pattern of shape changes is important to understand swimming of microorganisms and in designing low Reynolds number swimming models. The simplest models of shape changes are those that comprise a series of linked spheres that can change their separation and/or their size. Herein we compare the performance of three models in which these modes are used in different ways.
Citation: Qixuan Wang, Hans G. Othmer. The performance of discrete models of low reynolds number swimmers. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1303-1320. doi: 10.3934/mbe.2015.12.1303
References:
[1]

G. Alexander, C. Pooley and J. Yeomans, Hydrodynamics of linked sphere model swimmers,, Journal of Physics: Condensed Matter, 21 (2009).   Google Scholar

[2]

F. Alouges, A. DeSimone and A. Lefebvre, Optimal strokes for low reynolds number swimmers: An example,, Journal of Nonlinear Science, 18 (2008), 277.  doi: 10.1007/s00332-007-9013-7.  Google Scholar

[3]

F. Alouges, A. DeSimone and A. Lefebvre, Optimal strokes for axisymmetric microswimmers,, The European Physical Journal E: Soft Matter and Biological Physics, 28 (2009), 279.  doi: 10.1140/epje/i2008-10406-4.  Google Scholar

[4]

F. Alouges, A. DeSimone and L. Heltai, Numerical strategies for stroke optimization of axisymmetric microswimmers,, Mathematical Models and Methods in Applied Sciences, 21 (2011), 361.  doi: 10.1142/S0218202511005088.  Google Scholar

[5]

J. E. Avron, O. Gat and O. Kenneth, Optimal swimming at low reynolds numbers,, Phys. Rev. Lett, 93 (2004).  doi: 10.1103/PhysRevLett.93.186001.  Google Scholar

[6]

J. Avron, O. Kenneth and D. Oaknin, Pushmepullyou: An efficient micro-swimmer,, New Journal of Physics, 7 (2005).  doi: 10.1088/1367-2630/7/1/234.  Google Scholar

[7]

J. Avron and O. Raz, A geometric theory of swimming: Purcell's swimmer and its symmetrized cousin,, New Journal of Physics, 10 (2008).  doi: 10.1088/1367-2630/10/6/063016.  Google Scholar

[8]

C. Barentin, Y. Sawada and J. P. Rieu, An iterative method to calculate forces exerted by single cells and multicellular assemblies from the detection of deformations of flexible substrates,, Eur Biophys J, 35 (2006), 328.  doi: 10.1007/s00249-005-0038-2.  Google Scholar

[9]

N. P. Barry and M. S. Bretscher, Dictyostelium amoebae and neutrophils can swim,, PNAS, 107 (2010).  doi: 10.1073/pnas.1006327107.  Google Scholar

[10]

G. K. Batchelor, Brownian diffusion of particles with hydrodynamic interaction,, J. Fluid Mech., 74 (1976), 1.  doi: 10.1017/S0022112076001663.  Google Scholar

[11]

G. Batchelor, Slender-body theory for particles of arbitrary cross-section in stokes flow,, Journal of Fluid Mechanics, 44 (1970), 419.  doi: 10.1017/S002211207000191X.  Google Scholar

[12]

L. Becker, S. Koehler and H. Stone, On self-propulsion of micro-machines at low reynolds number: Purcell's three-link swimmer,, Journal of fluid mechanics, 490 (2003), 15.  doi: 10.1017/S0022112003005184.  Google Scholar

[13]

F. Binamé, G. Pawlak, P. Roux and U. Hibner, What makes cells move: Requirements and obstacles for spontaneous cell motility,, Molecular BioSystems, 6 (2010), 648.   Google Scholar

[14]

J. P. Butler, I. M. Tolic-Norrelykke, B. Fabry and J. J. Fredberg, Traction fields, moments, and strain energy that cells exert on their surroundings,, Am J Physiol Cell Physiol, 282 (2001).  doi: 10.1152/ajpcell.00270.2001.  Google Scholar

[15]

G. T. Charras and E. Paluch, Blebs lead the way: How to migrate without lamellipodia,, Nat Rev Mol Cell Biol, 9 (2008), 730.  doi: 10.1038/nrm2453.  Google Scholar

[16]

R. Cox, The motion of long slender bodies in a viscous fluid part 1. General theory,, Journal of Fluid mechanics, 44 (1970), 791.  doi: 10.1017/S002211207000215X.  Google Scholar

[17]

O. Fackler and R. Grosse, Cell motility through plasma membrane blebbing,, The Journal of Cell Biology, 181 (2008), 879.  doi: 10.1083/jcb.200802081.  Google Scholar

[18]

R. Golestanian and A. Ajdari, Analytic results for the three-sphere swimmer at low reynolds number,, , ().  doi: 10.1103/PhysRevE.77.036308.  Google Scholar

[19]

G. Hancock, The self-propulsion of microscopic organisms through liquids,, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 217 (1953), 96.  doi: 10.1098/rspa.1953.0048.  Google Scholar

[20]

R. Johnson, An improved slender-body theory for stokes flow,, Journal of Fluid Mechanics, 99 (1980), 411.  doi: 10.1017/S0022112080000687.  Google Scholar

[21]

R. Johnson and C. Brokaw, Flagellar hydrodynamics. A comparison between resistive-force theory and slender-body theory,, Biophysical journal, 25 (1979), 113.  doi: 10.1016/S0006-3495(79)85281-9.  Google Scholar

[22]

J. Keller and S. Rubinow, Slender-body theory for slow viscous flow,, J. Fluid Mech, 75 (1976), 705.  doi: 10.1017/S0022112076000475.  Google Scholar

[23]

S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, vol. 507,, Butterworth-Heinemann Boston, (1991).   Google Scholar

[24]

T. Lämmermann, B. L. Bader, S. J. Monkley, T. Worbs, R. Wedlich-Söldner, K. Hirsch, M. Keller, R. Förster, D. R. Critchley, R. Fässler et al., Rapid leukocyte migration by integrin-independent flowing and squeezing,, Nature, 453 (2008), 51.   Google Scholar

[25]

E. Lauga and T. R. Powers, The hydrodynamics of swimming microorganisms,, Repts. on Prog. in Phys., 72 (2009).  doi: 10.1088/0034-4885/72/9/096601.  Google Scholar

[26]

J. Lighthill, Flagellar hydrodynamics: The john von neumann lecture,, SIAM Review, (1975), 161.  doi: 10.1137/1018040.  Google Scholar

[27]

M. Lighthill, On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers,, Communications on Pure and Applied Mathematics, 5 (1952), 109.  doi: 10.1002/cpa.3160050201.  Google Scholar

[28]

S. Michelin and E. Lauga, Efficiency optimization and symmetry-breaking in a model of ciliary locomotion,, Physics of Fluids (1994-present), 22 (2010).  doi: 10.1063/1.3507951.  Google Scholar

[29]

A. Najafi and R. Golestanian, A simplest swimmer at low reynolds number: Three linked spheres,, , ().   Google Scholar

[30]

N. Osterman and A. Vilfan, Finding the ciliary beating pattern with optimal efficiency,, Proceedings of the National Academy of Sciences, 108 (2011), 15727.  doi: 10.1073/pnas.1107889108.  Google Scholar

[31]

E. Paluch, M. Piel, J. Prost, M. Bornens and C. Sykes, Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments,, Biophysical journal, 89 (2005), 724.  doi: 10.1529/biophysj.105.060590.  Google Scholar

[32]

C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow,, Cambridge Univ Pr, (1992).  doi: 10.1017/CBO9780511624124.  Google Scholar

[33]

E. Purcell, Life at low Reynolds number,, Amer. J. Physics, 45 (1977), 3.  doi: 10.1063/1.30370.  Google Scholar

[34]

E. Purcell, Life at low reynolds number,, Am. J. Phys, 45 (1977), 3.  doi: 10.1063/1.30370.  Google Scholar

[35]

J. Renkawitz and M. Sixt, Mechanisms of force generation and force transmission during interstitial leukocyte migration,, EMBO reports, 11 (2010), 744.  doi: 10.1038/embor.2010.147.  Google Scholar

[36]

A. Shapere and F. Wilczek, Geometry of self-propulsion at low Reynolds number,, J. Fluid Mech., 198 (1989), 557.  doi: 10.1017/S002211208900025X.  Google Scholar

[37]

D. Tam and A. E. Hosoi, Optimal stroke patterns for purcell's three-link swimmer,, Physical Review Letters, 98 (2007).  doi: 10.1103/PhysRevLett.98.068105.  Google Scholar

[38]

P. J. M. Van Haastert, Amoeboid cells use protrusions for walking, gliding and swimming,, PloS one, 6 (2011).   Google Scholar

[39]

Q. Wang, Modeling of Amoeboid Swimming at Low Reynolds Number,, PhD thesis, (2012).   Google Scholar

[40]

Q. Wang, J. Hu and H. G. Othmer, Natural Locomotion in Fluids and on Surfaces: Swimming, Flying, and Sliding, chapter Models of low Reynolds number swimmers inspired by cell blebbing, 197-206,, Frontiers in Applications of Mathematics, (2012).   Google Scholar

[41]

K. Yoshida and T. Soldati, Dissection of amoeboid movement into two mechanically distinct modes,, J. Cell Sci., 119 (2006), 3833.  doi: 10.1242/jcs.03152.  Google Scholar

show all references

References:
[1]

G. Alexander, C. Pooley and J. Yeomans, Hydrodynamics of linked sphere model swimmers,, Journal of Physics: Condensed Matter, 21 (2009).   Google Scholar

[2]

F. Alouges, A. DeSimone and A. Lefebvre, Optimal strokes for low reynolds number swimmers: An example,, Journal of Nonlinear Science, 18 (2008), 277.  doi: 10.1007/s00332-007-9013-7.  Google Scholar

[3]

F. Alouges, A. DeSimone and A. Lefebvre, Optimal strokes for axisymmetric microswimmers,, The European Physical Journal E: Soft Matter and Biological Physics, 28 (2009), 279.  doi: 10.1140/epje/i2008-10406-4.  Google Scholar

[4]

F. Alouges, A. DeSimone and L. Heltai, Numerical strategies for stroke optimization of axisymmetric microswimmers,, Mathematical Models and Methods in Applied Sciences, 21 (2011), 361.  doi: 10.1142/S0218202511005088.  Google Scholar

[5]

J. E. Avron, O. Gat and O. Kenneth, Optimal swimming at low reynolds numbers,, Phys. Rev. Lett, 93 (2004).  doi: 10.1103/PhysRevLett.93.186001.  Google Scholar

[6]

J. Avron, O. Kenneth and D. Oaknin, Pushmepullyou: An efficient micro-swimmer,, New Journal of Physics, 7 (2005).  doi: 10.1088/1367-2630/7/1/234.  Google Scholar

[7]

J. Avron and O. Raz, A geometric theory of swimming: Purcell's swimmer and its symmetrized cousin,, New Journal of Physics, 10 (2008).  doi: 10.1088/1367-2630/10/6/063016.  Google Scholar

[8]

C. Barentin, Y. Sawada and J. P. Rieu, An iterative method to calculate forces exerted by single cells and multicellular assemblies from the detection of deformations of flexible substrates,, Eur Biophys J, 35 (2006), 328.  doi: 10.1007/s00249-005-0038-2.  Google Scholar

[9]

N. P. Barry and M. S. Bretscher, Dictyostelium amoebae and neutrophils can swim,, PNAS, 107 (2010).  doi: 10.1073/pnas.1006327107.  Google Scholar

[10]

G. K. Batchelor, Brownian diffusion of particles with hydrodynamic interaction,, J. Fluid Mech., 74 (1976), 1.  doi: 10.1017/S0022112076001663.  Google Scholar

[11]

G. Batchelor, Slender-body theory for particles of arbitrary cross-section in stokes flow,, Journal of Fluid Mechanics, 44 (1970), 419.  doi: 10.1017/S002211207000191X.  Google Scholar

[12]

L. Becker, S. Koehler and H. Stone, On self-propulsion of micro-machines at low reynolds number: Purcell's three-link swimmer,, Journal of fluid mechanics, 490 (2003), 15.  doi: 10.1017/S0022112003005184.  Google Scholar

[13]

F. Binamé, G. Pawlak, P. Roux and U. Hibner, What makes cells move: Requirements and obstacles for spontaneous cell motility,, Molecular BioSystems, 6 (2010), 648.   Google Scholar

[14]

J. P. Butler, I. M. Tolic-Norrelykke, B. Fabry and J. J. Fredberg, Traction fields, moments, and strain energy that cells exert on their surroundings,, Am J Physiol Cell Physiol, 282 (2001).  doi: 10.1152/ajpcell.00270.2001.  Google Scholar

[15]

G. T. Charras and E. Paluch, Blebs lead the way: How to migrate without lamellipodia,, Nat Rev Mol Cell Biol, 9 (2008), 730.  doi: 10.1038/nrm2453.  Google Scholar

[16]

R. Cox, The motion of long slender bodies in a viscous fluid part 1. General theory,, Journal of Fluid mechanics, 44 (1970), 791.  doi: 10.1017/S002211207000215X.  Google Scholar

[17]

O. Fackler and R. Grosse, Cell motility through plasma membrane blebbing,, The Journal of Cell Biology, 181 (2008), 879.  doi: 10.1083/jcb.200802081.  Google Scholar

[18]

R. Golestanian and A. Ajdari, Analytic results for the three-sphere swimmer at low reynolds number,, , ().  doi: 10.1103/PhysRevE.77.036308.  Google Scholar

[19]

G. Hancock, The self-propulsion of microscopic organisms through liquids,, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 217 (1953), 96.  doi: 10.1098/rspa.1953.0048.  Google Scholar

[20]

R. Johnson, An improved slender-body theory for stokes flow,, Journal of Fluid Mechanics, 99 (1980), 411.  doi: 10.1017/S0022112080000687.  Google Scholar

[21]

R. Johnson and C. Brokaw, Flagellar hydrodynamics. A comparison between resistive-force theory and slender-body theory,, Biophysical journal, 25 (1979), 113.  doi: 10.1016/S0006-3495(79)85281-9.  Google Scholar

[22]

J. Keller and S. Rubinow, Slender-body theory for slow viscous flow,, J. Fluid Mech, 75 (1976), 705.  doi: 10.1017/S0022112076000475.  Google Scholar

[23]

S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, vol. 507,, Butterworth-Heinemann Boston, (1991).   Google Scholar

[24]

T. Lämmermann, B. L. Bader, S. J. Monkley, T. Worbs, R. Wedlich-Söldner, K. Hirsch, M. Keller, R. Förster, D. R. Critchley, R. Fässler et al., Rapid leukocyte migration by integrin-independent flowing and squeezing,, Nature, 453 (2008), 51.   Google Scholar

[25]

E. Lauga and T. R. Powers, The hydrodynamics of swimming microorganisms,, Repts. on Prog. in Phys., 72 (2009).  doi: 10.1088/0034-4885/72/9/096601.  Google Scholar

[26]

J. Lighthill, Flagellar hydrodynamics: The john von neumann lecture,, SIAM Review, (1975), 161.  doi: 10.1137/1018040.  Google Scholar

[27]

M. Lighthill, On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers,, Communications on Pure and Applied Mathematics, 5 (1952), 109.  doi: 10.1002/cpa.3160050201.  Google Scholar

[28]

S. Michelin and E. Lauga, Efficiency optimization and symmetry-breaking in a model of ciliary locomotion,, Physics of Fluids (1994-present), 22 (2010).  doi: 10.1063/1.3507951.  Google Scholar

[29]

A. Najafi and R. Golestanian, A simplest swimmer at low reynolds number: Three linked spheres,, , ().   Google Scholar

[30]

N. Osterman and A. Vilfan, Finding the ciliary beating pattern with optimal efficiency,, Proceedings of the National Academy of Sciences, 108 (2011), 15727.  doi: 10.1073/pnas.1107889108.  Google Scholar

[31]

E. Paluch, M. Piel, J. Prost, M. Bornens and C. Sykes, Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments,, Biophysical journal, 89 (2005), 724.  doi: 10.1529/biophysj.105.060590.  Google Scholar

[32]

C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow,, Cambridge Univ Pr, (1992).  doi: 10.1017/CBO9780511624124.  Google Scholar

[33]

E. Purcell, Life at low Reynolds number,, Amer. J. Physics, 45 (1977), 3.  doi: 10.1063/1.30370.  Google Scholar

[34]

E. Purcell, Life at low reynolds number,, Am. J. Phys, 45 (1977), 3.  doi: 10.1063/1.30370.  Google Scholar

[35]

J. Renkawitz and M. Sixt, Mechanisms of force generation and force transmission during interstitial leukocyte migration,, EMBO reports, 11 (2010), 744.  doi: 10.1038/embor.2010.147.  Google Scholar

[36]

A. Shapere and F. Wilczek, Geometry of self-propulsion at low Reynolds number,, J. Fluid Mech., 198 (1989), 557.  doi: 10.1017/S002211208900025X.  Google Scholar

[37]

D. Tam and A. E. Hosoi, Optimal stroke patterns for purcell's three-link swimmer,, Physical Review Letters, 98 (2007).  doi: 10.1103/PhysRevLett.98.068105.  Google Scholar

[38]

P. J. M. Van Haastert, Amoeboid cells use protrusions for walking, gliding and swimming,, PloS one, 6 (2011).   Google Scholar

[39]

Q. Wang, Modeling of Amoeboid Swimming at Low Reynolds Number,, PhD thesis, (2012).   Google Scholar

[40]

Q. Wang, J. Hu and H. G. Othmer, Natural Locomotion in Fluids and on Surfaces: Swimming, Flying, and Sliding, chapter Models of low Reynolds number swimmers inspired by cell blebbing, 197-206,, Frontiers in Applications of Mathematics, (2012).   Google Scholar

[41]

K. Yoshida and T. Soldati, Dissection of amoeboid movement into two mechanically distinct modes,, J. Cell Sci., 119 (2006), 3833.  doi: 10.1242/jcs.03152.  Google Scholar

[1]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[2]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[3]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[4]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[5]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[6]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[7]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[8]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[9]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]