• Previous Article
    On viable therapy strategy for a mathematical spatial cancer model describing the dynamics of malignant and healthy cells
  • MBE Home
  • This Issue
  • Next Article
    Aggregation and environmental transmission in chronic wasting disease
2015, 12(1): 185-208. doi: 10.3934/mbe.2015.12.185

Virus dynamics model with intracellular delays and immune response

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China

2. 

Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, 3041#, 2 Yi-Kuang Street, Harbin, 150080

Received  October 2013 Revised  October 2014 Published  December 2014

In this paper, we incorporate an extra logistic growth term for uninfected CD4$^+$ T-cells into an HIV-1 infection model with both intracellular delay and immune response delay which was studied by Pawelek et al. in [26]. First, we proved that if the basic reproduction number $R_0<1$, then the infection-free steady state is globally asymptotically stable. Second, when $R_0>1$, then the system is uniformly persistent, suggesting that the clearance or the uniform persistence of the virus is completely determined by $R_0 $. Furthermore, given both the two delays are zero, then the infected steady state is asymptotically stable when the intrinsic growth rate of the extra logistic term is sufficiently small. When the two delays are not zero, we showed that both the immune response delay and the intracellular delay may destabilize the infected steady state by leading to Hopf bifurcation and stable periodic oscillations, on which we analyzed the direction of the Hopf bifurcation as well as the stability of the bifurcating periodic orbits by normal form and center manifold theory introduced by Hassard et al [15]. Third, we engaged numerical simulations to explore the rich dynamics like chaotic oscillations, complicated bifurcation diagram of viral load due to the logistic term of target cells and the two time delays.
Citation: Haitao Song, Weihua Jiang, Shengqiang Liu. Virus dynamics model with intracellular delays and immune response. Mathematical Biosciences & Engineering, 2015, 12 (1) : 185-208. doi: 10.3934/mbe.2015.12.185
References:
[1]

R. Arnaout, M. A. Nowak and D. Wodarz, HIV-1 dynamics revisited: Biphasic decay by cytotoxic lymphocyte killing?,, Proc. R. Soc. Lond. B, 267 (2000), 1347. doi: 10.1098/rspb.2000.1149.

[2]

H. T. Banks and D. M. Bortz, A parameter sensitivity methodology in the context of HIV delay equation models,, J. Math. Biol., 50 (2005), 607. doi: 10.1007/s00285-004-0299-x.

[3]

S. Bonhoeffer, J. M. Coffin and M. A. Nowak, Human immunodeficiency virus drug therapy and virus load,, J. Virol., 71 (1997), 3275.

[4]

L. M. Cai and X. Z. Li, Stability and Hopf bifurcation in a delayed model for HIV infection of CD4$^+$ T-cells,, Chaos, 42 (2009), 1. doi: 10.1016/j.chaos.2008.04.048.

[5]

D. S. Callaway and A. S. Perelson, HIV-1 infection and low steady state viral loads,, Bull. Math. Biol., 64 (2002), 29. doi: 10.1006/bulm.2001.0266.

[6]

M. S. Ciupe, B. L. Bivort, D. M. Bortz and P. W. Nelson, Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathmatical models,, Math. Biosci., 200 (2006), 1. doi: 10.1016/j.mbs.2005.12.006.

[7]

K. L. Cooke and P. van den Driessche, On zeros of some transcendental equations,, Funkcialaj Ekvacioj, 29 (1986), 77.

[8]

R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells,, Math. Biosci., 165 (2000), 27. doi: 10.1016/S0025-5564(00)00006-7.

[9]

E. S. Daar, T. Moudgil, R. D. Meyer and D. D. Ho, Transient high levels of viremia in patients with primary human immunodefiniency virus type 1 infection,, N. Engl. J. Med., 324 (1991), 961. doi: 10.1056/NEJM199104043241405.

[10]

R. J. De Boer and A. S. Perelson, Towards a general function describing T cell proliferation,, J. Theor. Biol., 175 (1995), 567.

[11]

R. J. De Boer and A. S. Perelson, Target cell limited and immune control models of HIV infection: A comparison,, J. Theor. Biol., 190 (1998), 201.

[12]

N. M. Dixit and A. S. Perelson, Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellur delay,, J. Theor. Biol., 226 (2004), 95. doi: 10.1016/j.jtbi.2003.09.002.

[13]

H. I. Freedman and Y. Kuang, Stability switches in linear scalar neutral delay equations,, Funkcialaj Ekvacioj, 34 (1991), 187.

[14]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer-Verlag, (1993). doi: 10.1007/978-1-4612-4342-7.

[15]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Application of Hopf Bifurcation,, Cambrige University Press, (1981).

[16]

J. M. Heffernan and L. M. Wahl, Natural variation in HIV infection: Monte carlo estimates that include CD8 effector cells,, J. Theor. Biol., 243 (2006), 191. doi: 10.1016/j.jtbi.2006.05.032.

[17]

A. V. Herz, S. Bonhoeffer, R. M. Anderson, R. M. May and M. A. Nowak, Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay,, Proc. Natl. Acad. Sci. USA, 93 (1996), 7247. doi: 10.1073/pnas.93.14.7247.

[18]

J. P. Lasalle, The stability of dynamical systems,, in Regional Conference Series in Applied Mathematics, (1976).

[19]

M. Y. Li and H. Y. Shu, Global dynamics of a mathematical model for HTLV-I infection of CD4+ T cells with delayed CTL response,, Nonlinear Analysis: Real World Applications, 13 (2012), 1080. doi: 10.1016/j.nonrwa.2011.02.026.

[20]

M. Y. Li and H. Shu, Impact of intracelluar delays and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434. doi: 10.1137/090779322.

[21]

S. Q. Liu and L. Wang, Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy,, Math. Biosci. Eng., 7 (2010), 675. doi: 10.3934/mbe.2010.7.675.

[22]

P .W. Nelson, J. D. Murray and A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay,, Math. Biosci., 163 (2000), 201. doi: 10.1016/S0025-5564(99)00055-3.

[23]

P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection,, Math. Biosci., 179 (2002), 73. doi: 10.1016/S0025-5564(02)00099-8.

[24]

M. A. Nowak and C. R. Bangham, Population dynamics of immune responses to persistent virus,, Science, 272 (1996), 74.

[25]

M. A. Nowak and R. M. May, Virus dynamics: Mathematical principles of immunology and virology,, Oxford University, (2000).

[26]

K. A. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data,, Math. Biosci., 235 (2012), 98. doi: 10.1016/j.mbs.2011.11.002.

[27]

A. S. Perelson, Modelling viral and immune system dynamics,, Nat. Rev. Immunol., 2 (2002), 28. doi: 10.1038/nri700.

[28]

A. S. Perelson, P. Essunger, Y. Cao, M. Vesanen, A. Hurley, K. Saksela, M. Markowitz and D. D. Ho, Decay characteristics of HIV-1 infected compartments during combination therepy,, Nature, 387 (1997), 188. doi: 10.1038/387188a0.

[29]

A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV infection of CD4+ T cells,, Math. Biosci., 114 (1993), 81. doi: 10.1016/0025-5564(93)90043-A.

[30]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3. doi: 10.1137/S0036144598335107.

[31]

A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard and D. D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,, Science, 271 (1996), 1582. doi: 10.1126/science.271.5255.1582.

[32]

A. N. Phillips, Reduction of HIV concentration during acute infection: Independence from a specific immune response,, Science, 271 (1996), 497. doi: 10.1126/science.271.5248.497.

[33]

B. Ramratnam, S. Bonhoeffer, J. Binley, A. Hurley, L. Zhang, J. E. Mittler, M. Minarkowitz, J. P. Moore, A. S. Perelson and D. D. Ho, Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis,, Lancet, 354 (1999), 1782. doi: 10.1016/S0140-6736(99)02035-8.

[34]

L. Rong, Z. Feng and A. S. Perelson, Emergence of HIV-1 drug resistence during antiretroviral treatment,, Bull. Math. Biol., 69 (2007), 2027. doi: 10.1007/s11538-007-9203-3.

[35]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, in Mathematical Surveys and Monographs, 41., American Mathematical Society, (1995).

[36]

H. Smith and X. Zhao, Robust persistence for semidynamical systems,, Nonlinear Anal., 47 (2001), 6169. doi: 10.1016/S0362-546X(01)00678-2.

[37]

M. A. Stafford, L. Corey, Y. Z. Cao, E. S. Daar, D. D. Ho and A. S. Perelson, Modeling Plasma Virus Concentration during Primary HIV Infection,, J. Theor. Biol., 203 (2000), 285. doi: 10.1006/jtbi.2000.1076.

[38]

J. Wang, G. Huang and Y. Takeuchi, Global asymptotic stability for HIV-1 dynamics with two distributed delays,, Mathematical Medicine and Biology, 29 (2012), 283. doi: 10.1093/imammb/dqr009.

[39]

L. Wang and M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells,, Math. Biosci., 200 (2006), 44. doi: 10.1016/j.mbs.2005.12.026.

[40]

K. Wang, W. Wang and X. Liu, Global stability in a viral infection model with lytic and nonlytic immune response,, Comput. Math. Appl., 51 (2006), 1593. doi: 10.1016/j.camwa.2005.07.020.

[41]

Y. Wang, Y. Zhou, J. Wu and J. Heffernan, Oscillatory viral dynamics in a delayed HIV pathogenesis model,, Math, 219 (2009), 104. doi: 10.1016/j.mbs.2009.03.003.

[42]

D. Wodarz, J. P. Christensen and A. R. Thomsen, The importance of lytic and nonlytic immune responses viral infections,, Trends. Immunol., 23 (2002), 194. doi: 10.1016/S1471-4906(02)02189-0.

[43]

D. Wodarz, K. Page, R. Arnaout, A. Thomsen, J. Lifson and M. A. Nowak, A new theiry of cytotoxic T-lymphocyte memory: Implications for HIV treatment,, Philosophical Transactions of the Royal Society B: Biological Sciences, 355 (2000), 329. doi: 10.1098/rstb.2000.0570.

[44]

Z. Wu, Z. Y. Liu and R. Detels, HIV-1 infection in commercial plasma donors in China,, Lancet, 346 (1995), 61. doi: 10.1016/S0140-6736(95)92698-4.

[45]

H. Zhu and X. Zou, Dynamics of an HIV-1 infection model with cell-mediated immune response and intracellular delay,, Discrete Contin. Dyn. Syst. B, 12 (2009), 511. doi: 10.3934/dcdsb.2009.12.511.

[46]

H. Zhu and X. Zou, Impact of delays in cell infection and virus production on HIV-1 dynamics,, Math. Med. Biol., 25 (2008), 99. doi: 10.1093/imammb/dqm010.

show all references

References:
[1]

R. Arnaout, M. A. Nowak and D. Wodarz, HIV-1 dynamics revisited: Biphasic decay by cytotoxic lymphocyte killing?,, Proc. R. Soc. Lond. B, 267 (2000), 1347. doi: 10.1098/rspb.2000.1149.

[2]

H. T. Banks and D. M. Bortz, A parameter sensitivity methodology in the context of HIV delay equation models,, J. Math. Biol., 50 (2005), 607. doi: 10.1007/s00285-004-0299-x.

[3]

S. Bonhoeffer, J. M. Coffin and M. A. Nowak, Human immunodeficiency virus drug therapy and virus load,, J. Virol., 71 (1997), 3275.

[4]

L. M. Cai and X. Z. Li, Stability and Hopf bifurcation in a delayed model for HIV infection of CD4$^+$ T-cells,, Chaos, 42 (2009), 1. doi: 10.1016/j.chaos.2008.04.048.

[5]

D. S. Callaway and A. S. Perelson, HIV-1 infection and low steady state viral loads,, Bull. Math. Biol., 64 (2002), 29. doi: 10.1006/bulm.2001.0266.

[6]

M. S. Ciupe, B. L. Bivort, D. M. Bortz and P. W. Nelson, Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathmatical models,, Math. Biosci., 200 (2006), 1. doi: 10.1016/j.mbs.2005.12.006.

[7]

K. L. Cooke and P. van den Driessche, On zeros of some transcendental equations,, Funkcialaj Ekvacioj, 29 (1986), 77.

[8]

R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells,, Math. Biosci., 165 (2000), 27. doi: 10.1016/S0025-5564(00)00006-7.

[9]

E. S. Daar, T. Moudgil, R. D. Meyer and D. D. Ho, Transient high levels of viremia in patients with primary human immunodefiniency virus type 1 infection,, N. Engl. J. Med., 324 (1991), 961. doi: 10.1056/NEJM199104043241405.

[10]

R. J. De Boer and A. S. Perelson, Towards a general function describing T cell proliferation,, J. Theor. Biol., 175 (1995), 567.

[11]

R. J. De Boer and A. S. Perelson, Target cell limited and immune control models of HIV infection: A comparison,, J. Theor. Biol., 190 (1998), 201.

[12]

N. M. Dixit and A. S. Perelson, Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellur delay,, J. Theor. Biol., 226 (2004), 95. doi: 10.1016/j.jtbi.2003.09.002.

[13]

H. I. Freedman and Y. Kuang, Stability switches in linear scalar neutral delay equations,, Funkcialaj Ekvacioj, 34 (1991), 187.

[14]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer-Verlag, (1993). doi: 10.1007/978-1-4612-4342-7.

[15]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Application of Hopf Bifurcation,, Cambrige University Press, (1981).

[16]

J. M. Heffernan and L. M. Wahl, Natural variation in HIV infection: Monte carlo estimates that include CD8 effector cells,, J. Theor. Biol., 243 (2006), 191. doi: 10.1016/j.jtbi.2006.05.032.

[17]

A. V. Herz, S. Bonhoeffer, R. M. Anderson, R. M. May and M. A. Nowak, Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay,, Proc. Natl. Acad. Sci. USA, 93 (1996), 7247. doi: 10.1073/pnas.93.14.7247.

[18]

J. P. Lasalle, The stability of dynamical systems,, in Regional Conference Series in Applied Mathematics, (1976).

[19]

M. Y. Li and H. Y. Shu, Global dynamics of a mathematical model for HTLV-I infection of CD4+ T cells with delayed CTL response,, Nonlinear Analysis: Real World Applications, 13 (2012), 1080. doi: 10.1016/j.nonrwa.2011.02.026.

[20]

M. Y. Li and H. Shu, Impact of intracelluar delays and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434. doi: 10.1137/090779322.

[21]

S. Q. Liu and L. Wang, Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy,, Math. Biosci. Eng., 7 (2010), 675. doi: 10.3934/mbe.2010.7.675.

[22]

P .W. Nelson, J. D. Murray and A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay,, Math. Biosci., 163 (2000), 201. doi: 10.1016/S0025-5564(99)00055-3.

[23]

P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection,, Math. Biosci., 179 (2002), 73. doi: 10.1016/S0025-5564(02)00099-8.

[24]

M. A. Nowak and C. R. Bangham, Population dynamics of immune responses to persistent virus,, Science, 272 (1996), 74.

[25]

M. A. Nowak and R. M. May, Virus dynamics: Mathematical principles of immunology and virology,, Oxford University, (2000).

[26]

K. A. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data,, Math. Biosci., 235 (2012), 98. doi: 10.1016/j.mbs.2011.11.002.

[27]

A. S. Perelson, Modelling viral and immune system dynamics,, Nat. Rev. Immunol., 2 (2002), 28. doi: 10.1038/nri700.

[28]

A. S. Perelson, P. Essunger, Y. Cao, M. Vesanen, A. Hurley, K. Saksela, M. Markowitz and D. D. Ho, Decay characteristics of HIV-1 infected compartments during combination therepy,, Nature, 387 (1997), 188. doi: 10.1038/387188a0.

[29]

A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV infection of CD4+ T cells,, Math. Biosci., 114 (1993), 81. doi: 10.1016/0025-5564(93)90043-A.

[30]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3. doi: 10.1137/S0036144598335107.

[31]

A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard and D. D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,, Science, 271 (1996), 1582. doi: 10.1126/science.271.5255.1582.

[32]

A. N. Phillips, Reduction of HIV concentration during acute infection: Independence from a specific immune response,, Science, 271 (1996), 497. doi: 10.1126/science.271.5248.497.

[33]

B. Ramratnam, S. Bonhoeffer, J. Binley, A. Hurley, L. Zhang, J. E. Mittler, M. Minarkowitz, J. P. Moore, A. S. Perelson and D. D. Ho, Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis,, Lancet, 354 (1999), 1782. doi: 10.1016/S0140-6736(99)02035-8.

[34]

L. Rong, Z. Feng and A. S. Perelson, Emergence of HIV-1 drug resistence during antiretroviral treatment,, Bull. Math. Biol., 69 (2007), 2027. doi: 10.1007/s11538-007-9203-3.

[35]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, in Mathematical Surveys and Monographs, 41., American Mathematical Society, (1995).

[36]

H. Smith and X. Zhao, Robust persistence for semidynamical systems,, Nonlinear Anal., 47 (2001), 6169. doi: 10.1016/S0362-546X(01)00678-2.

[37]

M. A. Stafford, L. Corey, Y. Z. Cao, E. S. Daar, D. D. Ho and A. S. Perelson, Modeling Plasma Virus Concentration during Primary HIV Infection,, J. Theor. Biol., 203 (2000), 285. doi: 10.1006/jtbi.2000.1076.

[38]

J. Wang, G. Huang and Y. Takeuchi, Global asymptotic stability for HIV-1 dynamics with two distributed delays,, Mathematical Medicine and Biology, 29 (2012), 283. doi: 10.1093/imammb/dqr009.

[39]

L. Wang and M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells,, Math. Biosci., 200 (2006), 44. doi: 10.1016/j.mbs.2005.12.026.

[40]

K. Wang, W. Wang and X. Liu, Global stability in a viral infection model with lytic and nonlytic immune response,, Comput. Math. Appl., 51 (2006), 1593. doi: 10.1016/j.camwa.2005.07.020.

[41]

Y. Wang, Y. Zhou, J. Wu and J. Heffernan, Oscillatory viral dynamics in a delayed HIV pathogenesis model,, Math, 219 (2009), 104. doi: 10.1016/j.mbs.2009.03.003.

[42]

D. Wodarz, J. P. Christensen and A. R. Thomsen, The importance of lytic and nonlytic immune responses viral infections,, Trends. Immunol., 23 (2002), 194. doi: 10.1016/S1471-4906(02)02189-0.

[43]

D. Wodarz, K. Page, R. Arnaout, A. Thomsen, J. Lifson and M. A. Nowak, A new theiry of cytotoxic T-lymphocyte memory: Implications for HIV treatment,, Philosophical Transactions of the Royal Society B: Biological Sciences, 355 (2000), 329. doi: 10.1098/rstb.2000.0570.

[44]

Z. Wu, Z. Y. Liu and R. Detels, HIV-1 infection in commercial plasma donors in China,, Lancet, 346 (1995), 61. doi: 10.1016/S0140-6736(95)92698-4.

[45]

H. Zhu and X. Zou, Dynamics of an HIV-1 infection model with cell-mediated immune response and intracellular delay,, Discrete Contin. Dyn. Syst. B, 12 (2009), 511. doi: 10.3934/dcdsb.2009.12.511.

[46]

H. Zhu and X. Zou, Impact of delays in cell infection and virus production on HIV-1 dynamics,, Math. Med. Biol., 25 (2008), 99. doi: 10.1093/imammb/dqm010.

[1]

Jinliang Wang, Lijuan Guan. Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 297-302. doi: 10.3934/dcdsb.2012.17.297

[2]

Huiyan Zhu, Xingfu Zou. Dynamics of a HIV-1 Infection model with cell-mediated immune response and intracellular delay. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 511-524. doi: 10.3934/dcdsb.2009.12.511

[3]

Rachid Ouifki, Gareth Witten. A model of HIV-1 infection with HAART therapy and intracellular delays. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 229-240. doi: 10.3934/dcdsb.2007.8.229

[4]

Jinhu Xu, Yicang Zhou. Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences & Engineering, 2016, 13 (2) : 343-367. doi: 10.3934/mbe.2015006

[5]

Shengqiang Liu, Lin Wang. Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences & Engineering, 2010, 7 (3) : 675-685. doi: 10.3934/mbe.2010.7.675

[6]

Yun Tian, Yu Bai, Pei Yu. Impact of delay on HIV-1 dynamics of fighting a virus with another virus. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1181-1198. doi: 10.3934/mbe.2014.11.1181

[7]

Bing Li, Yuming Chen, Xuejuan Lu, Shengqiang Liu. A delayed HIV-1 model with virus waning term. Mathematical Biosciences & Engineering, 2016, 13 (1) : 135-157. doi: 10.3934/mbe.2016.13.135

[8]

Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182

[9]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[10]

Xinyue Fan, Claude-Michel Brauner, Linda Wittkop. Mathematical analysis of a HIV model with quadratic logistic growth term. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2359-2385. doi: 10.3934/dcdsb.2012.17.2359

[11]

Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa. A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences & Engineering, 2005, 2 (4) : 811-832. doi: 10.3934/mbe.2005.2.811

[12]

Xia Wang, Shengqiang Liu, Libin Rong. Permanence and extinction of a non-autonomous HIV-1 model with time delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1783-1800. doi: 10.3934/dcdsb.2014.19.1783

[13]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

[14]

Steffen Eikenberry, Sarah Hews, John D. Nagy, Yang Kuang. The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Mathematical Biosciences & Engineering, 2009, 6 (2) : 283-299. doi: 10.3934/mbe.2009.6.283

[15]

Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

[16]

Claude-Michel Brauner, Xinyue Fan, Luca Lorenzi. Two-dimensional stability analysis in a HIV model with quadratic logistic growth term. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1813-1844. doi: 10.3934/cpaa.2013.12.1813

[17]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[18]

Jie Lou, Tommaso Ruggeri, Claudio Tebaldi. Modeling Cancer in HIV-1 Infected Individuals: Equilibria, Cycles and Chaotic Behavior. Mathematical Biosciences & Engineering, 2006, 3 (2) : 313-324. doi: 10.3934/mbe.2006.3.313

[19]

Gesham Magombedze, Winston Garira, Eddie Mwenje. Modelling the immunopathogenesis of HIV-1 infection and the effect of multidrug therapy: The role of fusion inhibitors in HAART. Mathematical Biosciences & Engineering, 2008, 5 (3) : 485-504. doi: 10.3934/mbe.2008.5.485

[20]

E. Trofimchuk, Sergei Trofimchuk. Global stability in a regulated logistic growth model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 461-468. doi: 10.3934/dcdsb.2005.5.461

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]