2015, 12(1): 209-231. doi: 10.3934/mbe.2015.12.209

Aggregation and environmental transmission in chronic wasting disease

1. 

Department of Mathematics, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA 23606, United States

2. 

Department of Mathematics, The University of Texas-Pan American, 1201 W. University Drive, Edinburg, TX 78539, United States

3. 

Department of Mathematics, Univeristy of Ottawa, 585 King Edward, Ottawa, ON K1N 6N5, Canada

Received  March 2013 Revised  October 2014 Published  December 2014

Disease transmission depends on the interplay between the infectious agent and the behavior of the host. Some diseases, such as Chronic Wasting Disease, can be transmitted directly between hosts as well as indirectly via the environment. The social behavior of hosts affects both of these pathways, and a successful intervention requires knowledge of the relative influence of the different etiological and behavioral aspects of the disease. We develop a strategic differential equation model for Chronic Wasting Disease and include direct and indirect transmission as well as host aggregation into our model. We calculate the basic reproduction number and perform a sensitivity analysis based on Latin hypercube sampling from published parameter values. We find conditions for the existence of an endemic equilibrium, and show that, under a certain mild assumption on parameters, the model does not exhibit a backward bifurcation or bistability. Hence, the basic reproduction number constitutes the disease elimination threshold. We find that the prevalence of the disease decreases with host aggregation and increases with the lifespan of the infectious agent in the environment.
Citation: Olga Vasilyeva, Tamer Oraby, Frithjof Lutscher. Aggregation and environmental transmission in chronic wasting disease. Mathematical Biosciences & Engineering, 2015, 12 (1) : 209-231. doi: 10.3934/mbe.2015.12.209
References:
[1]

A. Aguzzi, M. Heikenwalder and M. Polymenidou, Insights into prion strains and neurotoxicity,, Nature Reviews Molecular Cell Biology, 8 (2007), 552.  doi: 10.1038/nrm2204.  Google Scholar

[2]

E. Almberg, P. Cross, C. Johnson, D. Heisey and B. Richards, Modeling routes of Chronic Wasting Disease transmission: Environmental prion persistence promotes deer population decline and extinction,, PLoS One, 6 (2011).  doi: 10.1371/journal.pone.0019896.  Google Scholar

[3]

M. Begon, M. Bennett, R. G. Bowers, N. P. French, S. M. Hazel and J. Turner, A clarification of transmission terms in host-microparasite models: Numbers, densities and areas,, Epidemiology and Infection, 129 (2002), 147.  doi: 10.1017/S0950268802007148.  Google Scholar

[4]

R. Breban, Role of environmental persistence in pathogen transmission: A mathematical modeling approach,, J. Math. Biol., 66 (2013), 535.  doi: 10.1007/s00285-012-0520-2.  Google Scholar

[5]

C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications,, Mathematical Biosciences and Engineering, 1 (2004), 361.  doi: 10.3934/mbe.2004.1.361.  Google Scholar

[6]

J. Collinge and A. R. Clarke, A general model of prion strains and their pathogenicity,, Science, 318 (2007), 930.  doi: 10.1126/science.1138718.  Google Scholar

[7]

M. M. Conner, M. R. Ebinger, J. A. Blanchong and P. C. Cross, Infectios disease in cervids of North America,, Ann. N.Y. Acad. Sci., 1134 (2008), 146.  doi: 10.1196/annals.1439.005.  Google Scholar

[8]

M. M. Conner, M. W. Miller, M. R. Ebinger and K. P. Burnham, A meta-BACI approach for evaluating management intervention on chronic wasting disease in mule deer,, Ecological Applications, 17 (2007), 140.  doi: 10.1890/1051-0761(2007)017[0140:AMAFEM]2.0.CO;2.  Google Scholar

[9]

O. Diekmann and J. A. M. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,, John Wiley & Sons, (2000).   Google Scholar

[10]

K. Dietz, Overall population patterns in the transmission cycle of infectious disease agents,, Population Biology of Infectious Diseases, 25 (1982), 87.  doi: 10.1007/978-3-642-68635-1_6.  Google Scholar

[11]

G. L. Dusek, R. J. MacKie, J. D. Herriges and B. B. Compton, Population ecology of white-tailed deer along the Lower Yellowstone River,, Wildlife Monographs, 104 (1989), 3.   Google Scholar

[12]

H. R. Fryer and A. R. McLean, There is no safe dose of prions,, PLoS ONE, 6 (2011).  doi: 10.1371/journal.pone.0023664.  Google Scholar

[13]

J. E. Gross and M. W. Miller, Chronic wasting disease in mule deer: Disease dynamics and control,, The Journal of Wildlife Management, 65 (2001), 205.  doi: 10.2307/3802899.  Google Scholar

[14]

T. Habib, E. Merrill, M. J. Pybus and D. Coltman, Modelling landscape effects on density-contact rate relationships in eastern Alberta: Inplications for chronic wasting disease,, Ecological Modelling, 222 (2011), 2722.  doi: 10.1016/j.ecolmodel.2011.05.007.  Google Scholar

[15]

J. O. Lloyd-Smith, P. C. Cross, C. J. Briggs, M. Daugherty, W. M. Getz, J. Latto, M. S. Sanchez, A. B. Smith and A. Swei, Should we expect population thresholds for wildlife disease?,, Trends in Ecology & Evolution, 20 (2005), 511.  doi: 10.1016/j.tree.2005.07.004.  Google Scholar

[16]

C. K. Mathiason, S. A. Hays, J. Powers, J. Hayes-Klug and J. Langenberg, et al, Infectious prions in pre-clinical deer and transmission of chronic wasting disease solely by environmental exposure,, PLoS ONE, 4 (2009).  doi: 10.1371/journal.pone.0005916.  Google Scholar

[17]

R. M. May, Host-parasitoid systems in patchy environments: A phenomenological model,, Journal of Animal Ecology, 47 (1978), 833.  doi: 10.2307/3674.  Google Scholar

[18]

M. W. Miller, N. T. Hobbs and S. J. Tavener, Dynamics of prion disease transmission in mule deer,, Ecological Applications, 16 (2006), 2208.  doi: {10.1890/1051-0761(2006)016[2208:DOPDTI]2.0.CO;2}.  Google Scholar

[19]

M. W. Miller, E. S. Williams, N. T. Hobbs and L. L. Wolfe, Environmental sources of prion transmission in mule deer,, Emerg. Infect. Dis., 10 (2004), 1003.  doi: 10.3201/eid1006.040010.  Google Scholar

[20]

P. R. Moorcroft and M. A. Lewis, Mechanistic Home Range Analysis,, Princeton University Press, (2006).   Google Scholar

[21]

E. M. Schauber and A. Woolf, Chronic wasting disease in deer and elk: A critique of current models and their application,, Wildlife Society Bulletin, 31 (2003), 610.   Google Scholar

[22]

H. R. Thieme, Mathematics in Population Biology,, Princeton Series in Theoretical and Computational Biology, (2003).   Google Scholar

[23]

G. Wasserberg, E. E. Osnas, R. E. Rolley and M. D. Samuel, Host culling as an adaptive management tool for chronic wasting disease in white-tailed deer: A modelling study,, Journal of Applied Ecology, 46 (2009), 457.  doi: 10.1111/j.1365-2664.2008.01576.x.  Google Scholar

[24]

E. S. Williams and M. W. Miller, Chronic wasting disease in deer and elk in North America,, Revue Scientifique et technique de l'Office International des Epizzoties, 21 (2002), 305.   Google Scholar

show all references

References:
[1]

A. Aguzzi, M. Heikenwalder and M. Polymenidou, Insights into prion strains and neurotoxicity,, Nature Reviews Molecular Cell Biology, 8 (2007), 552.  doi: 10.1038/nrm2204.  Google Scholar

[2]

E. Almberg, P. Cross, C. Johnson, D. Heisey and B. Richards, Modeling routes of Chronic Wasting Disease transmission: Environmental prion persistence promotes deer population decline and extinction,, PLoS One, 6 (2011).  doi: 10.1371/journal.pone.0019896.  Google Scholar

[3]

M. Begon, M. Bennett, R. G. Bowers, N. P. French, S. M. Hazel and J. Turner, A clarification of transmission terms in host-microparasite models: Numbers, densities and areas,, Epidemiology and Infection, 129 (2002), 147.  doi: 10.1017/S0950268802007148.  Google Scholar

[4]

R. Breban, Role of environmental persistence in pathogen transmission: A mathematical modeling approach,, J. Math. Biol., 66 (2013), 535.  doi: 10.1007/s00285-012-0520-2.  Google Scholar

[5]

C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications,, Mathematical Biosciences and Engineering, 1 (2004), 361.  doi: 10.3934/mbe.2004.1.361.  Google Scholar

[6]

J. Collinge and A. R. Clarke, A general model of prion strains and their pathogenicity,, Science, 318 (2007), 930.  doi: 10.1126/science.1138718.  Google Scholar

[7]

M. M. Conner, M. R. Ebinger, J. A. Blanchong and P. C. Cross, Infectios disease in cervids of North America,, Ann. N.Y. Acad. Sci., 1134 (2008), 146.  doi: 10.1196/annals.1439.005.  Google Scholar

[8]

M. M. Conner, M. W. Miller, M. R. Ebinger and K. P. Burnham, A meta-BACI approach for evaluating management intervention on chronic wasting disease in mule deer,, Ecological Applications, 17 (2007), 140.  doi: 10.1890/1051-0761(2007)017[0140:AMAFEM]2.0.CO;2.  Google Scholar

[9]

O. Diekmann and J. A. M. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,, John Wiley & Sons, (2000).   Google Scholar

[10]

K. Dietz, Overall population patterns in the transmission cycle of infectious disease agents,, Population Biology of Infectious Diseases, 25 (1982), 87.  doi: 10.1007/978-3-642-68635-1_6.  Google Scholar

[11]

G. L. Dusek, R. J. MacKie, J. D. Herriges and B. B. Compton, Population ecology of white-tailed deer along the Lower Yellowstone River,, Wildlife Monographs, 104 (1989), 3.   Google Scholar

[12]

H. R. Fryer and A. R. McLean, There is no safe dose of prions,, PLoS ONE, 6 (2011).  doi: 10.1371/journal.pone.0023664.  Google Scholar

[13]

J. E. Gross and M. W. Miller, Chronic wasting disease in mule deer: Disease dynamics and control,, The Journal of Wildlife Management, 65 (2001), 205.  doi: 10.2307/3802899.  Google Scholar

[14]

T. Habib, E. Merrill, M. J. Pybus and D. Coltman, Modelling landscape effects on density-contact rate relationships in eastern Alberta: Inplications for chronic wasting disease,, Ecological Modelling, 222 (2011), 2722.  doi: 10.1016/j.ecolmodel.2011.05.007.  Google Scholar

[15]

J. O. Lloyd-Smith, P. C. Cross, C. J. Briggs, M. Daugherty, W. M. Getz, J. Latto, M. S. Sanchez, A. B. Smith and A. Swei, Should we expect population thresholds for wildlife disease?,, Trends in Ecology & Evolution, 20 (2005), 511.  doi: 10.1016/j.tree.2005.07.004.  Google Scholar

[16]

C. K. Mathiason, S. A. Hays, J. Powers, J. Hayes-Klug and J. Langenberg, et al, Infectious prions in pre-clinical deer and transmission of chronic wasting disease solely by environmental exposure,, PLoS ONE, 4 (2009).  doi: 10.1371/journal.pone.0005916.  Google Scholar

[17]

R. M. May, Host-parasitoid systems in patchy environments: A phenomenological model,, Journal of Animal Ecology, 47 (1978), 833.  doi: 10.2307/3674.  Google Scholar

[18]

M. W. Miller, N. T. Hobbs and S. J. Tavener, Dynamics of prion disease transmission in mule deer,, Ecological Applications, 16 (2006), 2208.  doi: {10.1890/1051-0761(2006)016[2208:DOPDTI]2.0.CO;2}.  Google Scholar

[19]

M. W. Miller, E. S. Williams, N. T. Hobbs and L. L. Wolfe, Environmental sources of prion transmission in mule deer,, Emerg. Infect. Dis., 10 (2004), 1003.  doi: 10.3201/eid1006.040010.  Google Scholar

[20]

P. R. Moorcroft and M. A. Lewis, Mechanistic Home Range Analysis,, Princeton University Press, (2006).   Google Scholar

[21]

E. M. Schauber and A. Woolf, Chronic wasting disease in deer and elk: A critique of current models and their application,, Wildlife Society Bulletin, 31 (2003), 610.   Google Scholar

[22]

H. R. Thieme, Mathematics in Population Biology,, Princeton Series in Theoretical and Computational Biology, (2003).   Google Scholar

[23]

G. Wasserberg, E. E. Osnas, R. E. Rolley and M. D. Samuel, Host culling as an adaptive management tool for chronic wasting disease in white-tailed deer: A modelling study,, Journal of Applied Ecology, 46 (2009), 457.  doi: 10.1111/j.1365-2664.2008.01576.x.  Google Scholar

[24]

E. S. Williams and M. W. Miller, Chronic wasting disease in deer and elk in North America,, Revue Scientifique et technique de l'Office International des Epizzoties, 21 (2002), 305.   Google Scholar

[1]

Mahin Salmani, P. van den Driessche. A model for disease transmission in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 185-202. doi: 10.3934/dcdsb.2006.6.185

[2]

Burcu Adivar, Ebru Selin Selen. Compartmental disease transmission models for smallpox. Conference Publications, 2011, 2011 (Special) : 13-21. doi: 10.3934/proc.2011.2011.13

[3]

Jing-Jing Xiang, Juan Wang, Li-Ming Cai. Global stability of the dengue disease transmission models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2217-2232. doi: 10.3934/dcdsb.2015.20.2217

[4]

Mary P. Hebert, Linda J. S. Allen. Disease outbreaks in plant-vector-virus models with vector aggregation and dispersal. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2169-2191. doi: 10.3934/dcdsb.2016042

[5]

Roger M. Nisbet, Kurt E. Anderson, Edward McCauley, Mark A. Lewis. Response of equilibrium states to spatial environmental heterogeneity in advective systems. Mathematical Biosciences & Engineering, 2007, 4 (1) : 1-13. doi: 10.3934/mbe.2007.4.1

[6]

Hongbin Guo, Michael Yi Li. Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2413-2430. doi: 10.3934/dcdsb.2012.17.2413

[7]

W.R. Derrick, P. van den Driessche. Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 299-309. doi: 10.3934/dcdsb.2003.3.299

[8]

Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51

[9]

Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105

[10]

Ovide Arino, Manuel Delgado, Mónica Molina-Becerra. Asymptotic behavior of disease-free equilibriums of an age-structured predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 501-515. doi: 10.3934/dcdsb.2004.4.501

[11]

José A. Carrillo, Yanghong Huang. Explicit equilibrium solutions for the aggregation equation with power-law potentials. Kinetic & Related Models, 2017, 10 (1) : 171-192. doi: 10.3934/krm.2017007

[12]

Ping Yan. A frailty model for intervention effectiveness against disease transmission when implemented with unobservable heterogeneity. Mathematical Biosciences & Engineering, 2018, 15 (1) : 275-298. doi: 10.3934/mbe.2018012

[13]

Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1099-1116. doi: 10.3934/mbe.2018049

[14]

Hiroshi Nishiura. Time variations in the generation time of an infectious disease: Implications for sampling to appropriately quantify transmission potential. Mathematical Biosciences & Engineering, 2010, 7 (4) : 851-869. doi: 10.3934/mbe.2010.7.851

[15]

L. Bakker. The Katok-Spatzier conjecture, generalized symmetries, and equilibrium-free flows. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1183-1200. doi: 10.3934/cpaa.2013.12.1183

[16]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[17]

Wendi Wang. Population dispersal and disease spread. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 797-804. doi: 10.3934/dcdsb.2004.4.797

[18]

Roberto A. Saenz, Herbert W. Hethcote. Competing species models with an infectious disease. Mathematical Biosciences & Engineering, 2006, 3 (1) : 219-235. doi: 10.3934/mbe.2006.3.219

[19]

Ram P. Sigdel, C. Connell McCluskey. Disease dynamics for the hometown of migrant workers. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1175-1180. doi: 10.3934/mbe.2014.11.1175

[20]

Kokum R. De Silva, Shigetoshi Eda, Suzanne Lenhart. Modeling environmental transmission of MAP infection in dairy cows. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1001-1017. doi: 10.3934/mbe.2017052

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]