2015, 12(2): 233-258. doi: 10.3934/mbe.2015.12.233

Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model

1. 

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010, United States

2. 

Department of Mathematics, Box 8205, North Carolina State University, Raleigh, NC 27695-8205

Received  April 2014 Revised  September 2014 Published  December 2014

We study a quasilinear hierarchically size-structured population model presented in [4]. In this model the growth, mortality and reproduction rates are assumed to depend on a function of the population density. In [4] we showed that solutions to this model can become singular (measure-valued) in finite time even if all the individual parameters are smooth. Therefore, in this paper we develop a first order finite difference scheme to compute these measure-valued solutions. Convergence analysis for this method is provided. We also develop a high resolution second order scheme to compute the measure-valued solution of the model and perform a comparative study between the two schemes.
Citation: Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233
References:
[1]

A. S. Ackleh, L. J. S. Allen and J. Carter, Establishing a beachhead: A stochastic population model with an allee effect applied to species invasion,, Theor. Popul. Biol., 71 (2007), 290.  doi: 10.1016/j.tpb.2006.12.006.  Google Scholar

[2]

A. S. Ackleh, K. Deng and S. Hu, A quasilinear hierarchical size structured model: Well-posedness and approximation,, Appl. Math. Optim., 51 (2005), 35.  doi: 10.1007/s00245-004-0806-2.  Google Scholar

[3]

A. S. Ackleh and K. Ito, A finite difference scheme for the nonlinear-size structured population model,, J. Num. Funct. Anal. Optimization, 18 (1997), 865.  doi: 10.1080/01630569708816798.  Google Scholar

[4]

A. S. Ackleh and K. Ito, Measure-valued solutions for a hierarchically size-structured population,, J. Differential Equations, 217 (2005), 431.  doi: 10.1016/j.jde.2004.12.013.  Google Scholar

[5]

K. W. Blayneh, Hierarchical size-structured population model,, Dynamic Systems Appl., 9 (2000), 527.   Google Scholar

[6]

A. Calsina and J. Saldana, Asymptotic behaviour of a model of hierarchically structured population,, J. Math. Biol., 35 (1997), 967.  doi: 10.1007/s002850050085.  Google Scholar

[7]

J. A. Carrillo, R. M. Colombo, P. Gwiazda and A. Ulikowska, Structured populations, cell growth and measure valued balance laws,, J. Differetial Equations, 252 (2012), 3245.  doi: 10.1016/j.jde.2011.11.003.  Google Scholar

[8]

J. A. Carrillo, P. Gwiazda and A. Ulikowska, Splitting-particle methods for structured population models: Convergence and applications,, Math. Models Methods Appl. Sci., 24 (2014), 2171.  doi: 10.1142/S0218202514500183.  Google Scholar

[9]

J. M. Cushing, The dynamics of hierarchical age-structured populations,, J. Math. Biol., 32 (1994), 705.  doi: 10.1007/BF00163023.  Google Scholar

[10]

O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models, II Nonlinear theory,, J. Math. Biol., 43 (2001), 157.  doi: 10.1007/s002850170002.  Google Scholar

[11]

P. Gwiazda, J. Jablonski, A. Marciniak-Czochra and A. Ulikowska, Analysis of particle methods for structured population models with nonlocal boundary term in the framework of bounded Lipschitz distance,, Num. Meth. Partial Diff. Eq., 30 (2014), 1797.  doi: 10.1002/num.21879.  Google Scholar

[12]

P. Gwiazda, T. Lorenz and A. Marciniak-Czochra, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients,, J. Differential Equations, 248 (2010), 2703.  doi: 10.1016/j.jde.2010.02.010.  Google Scholar

[13]

S. M. Henson and J. M. Cushing, Hierarchical models of intra-specific competition: Scramble versus contest,, J. Math. Biol., 34 (1996), 755.   Google Scholar

[14]

E. A. Kraev, Existence and uniqueness for height structured hierarchical populations models,, Natural Resource Modeling, 14 (2001), 45.  doi: 10.1111/j.1939-7445.2001.tb00050.x.  Google Scholar

[15]

S. Kruskov, First-order quasilinear equations in several independent variables,, Mat. Sb., 123 (1970), 228.   Google Scholar

[16]

J. Shen, C.-W. Shu and M. Zhang, High resolution schemes for a hierarchical size-structured model,, SIAM J. Numer. Anal., 45 (2007), 352.  doi: 10.1137/050638126.  Google Scholar

[17]

C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes,, J. Comput. Phys., 77 (1988), 439.  doi: 10.1016/0021-9991(88)90177-5.  Google Scholar

[18]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer-Verlag, (1994).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

show all references

References:
[1]

A. S. Ackleh, L. J. S. Allen and J. Carter, Establishing a beachhead: A stochastic population model with an allee effect applied to species invasion,, Theor. Popul. Biol., 71 (2007), 290.  doi: 10.1016/j.tpb.2006.12.006.  Google Scholar

[2]

A. S. Ackleh, K. Deng and S. Hu, A quasilinear hierarchical size structured model: Well-posedness and approximation,, Appl. Math. Optim., 51 (2005), 35.  doi: 10.1007/s00245-004-0806-2.  Google Scholar

[3]

A. S. Ackleh and K. Ito, A finite difference scheme for the nonlinear-size structured population model,, J. Num. Funct. Anal. Optimization, 18 (1997), 865.  doi: 10.1080/01630569708816798.  Google Scholar

[4]

A. S. Ackleh and K. Ito, Measure-valued solutions for a hierarchically size-structured population,, J. Differential Equations, 217 (2005), 431.  doi: 10.1016/j.jde.2004.12.013.  Google Scholar

[5]

K. W. Blayneh, Hierarchical size-structured population model,, Dynamic Systems Appl., 9 (2000), 527.   Google Scholar

[6]

A. Calsina and J. Saldana, Asymptotic behaviour of a model of hierarchically structured population,, J. Math. Biol., 35 (1997), 967.  doi: 10.1007/s002850050085.  Google Scholar

[7]

J. A. Carrillo, R. M. Colombo, P. Gwiazda and A. Ulikowska, Structured populations, cell growth and measure valued balance laws,, J. Differetial Equations, 252 (2012), 3245.  doi: 10.1016/j.jde.2011.11.003.  Google Scholar

[8]

J. A. Carrillo, P. Gwiazda and A. Ulikowska, Splitting-particle methods for structured population models: Convergence and applications,, Math. Models Methods Appl. Sci., 24 (2014), 2171.  doi: 10.1142/S0218202514500183.  Google Scholar

[9]

J. M. Cushing, The dynamics of hierarchical age-structured populations,, J. Math. Biol., 32 (1994), 705.  doi: 10.1007/BF00163023.  Google Scholar

[10]

O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models, II Nonlinear theory,, J. Math. Biol., 43 (2001), 157.  doi: 10.1007/s002850170002.  Google Scholar

[11]

P. Gwiazda, J. Jablonski, A. Marciniak-Czochra and A. Ulikowska, Analysis of particle methods for structured population models with nonlocal boundary term in the framework of bounded Lipschitz distance,, Num. Meth. Partial Diff. Eq., 30 (2014), 1797.  doi: 10.1002/num.21879.  Google Scholar

[12]

P. Gwiazda, T. Lorenz and A. Marciniak-Czochra, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients,, J. Differential Equations, 248 (2010), 2703.  doi: 10.1016/j.jde.2010.02.010.  Google Scholar

[13]

S. M. Henson and J. M. Cushing, Hierarchical models of intra-specific competition: Scramble versus contest,, J. Math. Biol., 34 (1996), 755.   Google Scholar

[14]

E. A. Kraev, Existence and uniqueness for height structured hierarchical populations models,, Natural Resource Modeling, 14 (2001), 45.  doi: 10.1111/j.1939-7445.2001.tb00050.x.  Google Scholar

[15]

S. Kruskov, First-order quasilinear equations in several independent variables,, Mat. Sb., 123 (1970), 228.   Google Scholar

[16]

J. Shen, C.-W. Shu and M. Zhang, High resolution schemes for a hierarchical size-structured model,, SIAM J. Numer. Anal., 45 (2007), 352.  doi: 10.1137/050638126.  Google Scholar

[17]

C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes,, J. Comput. Phys., 77 (1988), 439.  doi: 10.1016/0021-9991(88)90177-5.  Google Scholar

[18]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer-Verlag, (1994).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[1]

Qihua Huang, Hao Wang. A toxin-mediated size-structured population model: Finite difference approximation and well-posedness. Mathematical Biosciences & Engineering, 2016, 13 (4) : 697-722. doi: 10.3934/mbe.2016015

[2]

Xianlong Fu, Dongmei Zhu. Stability analysis for a size-structured juvenile-adult population model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 391-417. doi: 10.3934/dcdsb.2014.19.391

[3]

Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Communications on Pure & Applied Analysis, 2016, 15 (2) : 637-655. doi: 10.3934/cpaa.2016.15.637

[4]

Dongxue Yan, Yu Cao, Xianlong Fu. Asymptotic analysis of a size-structured cannibalism population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1975-1998. doi: 10.3934/dcdsb.2016032

[5]

Dongxue Yan, Xianlong Fu. Asymptotic behavior of a hierarchical size-structured population model. Evolution Equations & Control Theory, 2018, 7 (2) : 293-316. doi: 10.3934/eect.2018015

[6]

Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109

[7]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[8]

L. M. Abia, O. Angulo, J.C. López-Marcos. Size-structured population dynamics models and their numerical solutions. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1203-1222. doi: 10.3934/dcdsb.2004.4.1203

[9]

Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017

[10]

József Z. Farkas, Thomas Hagen. Asymptotic analysis of a size-structured cannibalism model with infinite dimensional environmental feedback. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1825-1839. doi: 10.3934/cpaa.2009.8.1825

[11]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[12]

Cleopatra Christoforou, Myrto Galanopoulou, Athanasios E. Tzavaras. Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6175-6206. doi: 10.3934/dcds.2019269

[13]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[14]

Jixun Chu, Pierre Magal. Hopf bifurcation for a size-structured model with resting phase. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4891-4921. doi: 10.3934/dcds.2013.33.4891

[15]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[16]

Blaise Faugeras, Olivier Maury. An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery. Mathematical Biosciences & Engineering, 2005, 2 (4) : 719-741. doi: 10.3934/mbe.2005.2.719

[17]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020041

[18]

Dan Zhang, Xiaochun Cai, Lin Wang. Complex dynamics in a discrete-time size-structured chemostat model with inhibitory kinetics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3439-3451. doi: 10.3934/dcdsb.2018327

[19]

Azmy S. Ackleh, H.T. Banks, Keng Deng, Shuhua Hu. Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations. Mathematical Biosciences & Engineering, 2005, 2 (2) : 289-315. doi: 10.3934/mbe.2005.2.289

[20]

Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

[Back to Top]