2015, 12(2): 233-258. doi: 10.3934/mbe.2015.12.233

Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model

1. 

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010, United States

2. 

Department of Mathematics, Box 8205, North Carolina State University, Raleigh, NC 27695-8205

Received  April 2014 Revised  September 2014 Published  December 2014

We study a quasilinear hierarchically size-structured population model presented in [4]. In this model the growth, mortality and reproduction rates are assumed to depend on a function of the population density. In [4] we showed that solutions to this model can become singular (measure-valued) in finite time even if all the individual parameters are smooth. Therefore, in this paper we develop a first order finite difference scheme to compute these measure-valued solutions. Convergence analysis for this method is provided. We also develop a high resolution second order scheme to compute the measure-valued solution of the model and perform a comparative study between the two schemes.
Citation: Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233
References:
[1]

A. S. Ackleh, L. J. S. Allen and J. Carter, Establishing a beachhead: A stochastic population model with an allee effect applied to species invasion,, Theor. Popul. Biol., 71 (2007), 290.  doi: 10.1016/j.tpb.2006.12.006.  Google Scholar

[2]

A. S. Ackleh, K. Deng and S. Hu, A quasilinear hierarchical size structured model: Well-posedness and approximation,, Appl. Math. Optim., 51 (2005), 35.  doi: 10.1007/s00245-004-0806-2.  Google Scholar

[3]

A. S. Ackleh and K. Ito, A finite difference scheme for the nonlinear-size structured population model,, J. Num. Funct. Anal. Optimization, 18 (1997), 865.  doi: 10.1080/01630569708816798.  Google Scholar

[4]

A. S. Ackleh and K. Ito, Measure-valued solutions for a hierarchically size-structured population,, J. Differential Equations, 217 (2005), 431.  doi: 10.1016/j.jde.2004.12.013.  Google Scholar

[5]

K. W. Blayneh, Hierarchical size-structured population model,, Dynamic Systems Appl., 9 (2000), 527.   Google Scholar

[6]

A. Calsina and J. Saldana, Asymptotic behaviour of a model of hierarchically structured population,, J. Math. Biol., 35 (1997), 967.  doi: 10.1007/s002850050085.  Google Scholar

[7]

J. A. Carrillo, R. M. Colombo, P. Gwiazda and A. Ulikowska, Structured populations, cell growth and measure valued balance laws,, J. Differetial Equations, 252 (2012), 3245.  doi: 10.1016/j.jde.2011.11.003.  Google Scholar

[8]

J. A. Carrillo, P. Gwiazda and A. Ulikowska, Splitting-particle methods for structured population models: Convergence and applications,, Math. Models Methods Appl. Sci., 24 (2014), 2171.  doi: 10.1142/S0218202514500183.  Google Scholar

[9]

J. M. Cushing, The dynamics of hierarchical age-structured populations,, J. Math. Biol., 32 (1994), 705.  doi: 10.1007/BF00163023.  Google Scholar

[10]

O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models, II Nonlinear theory,, J. Math. Biol., 43 (2001), 157.  doi: 10.1007/s002850170002.  Google Scholar

[11]

P. Gwiazda, J. Jablonski, A. Marciniak-Czochra and A. Ulikowska, Analysis of particle methods for structured population models with nonlocal boundary term in the framework of bounded Lipschitz distance,, Num. Meth. Partial Diff. Eq., 30 (2014), 1797.  doi: 10.1002/num.21879.  Google Scholar

[12]

P. Gwiazda, T. Lorenz and A. Marciniak-Czochra, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients,, J. Differential Equations, 248 (2010), 2703.  doi: 10.1016/j.jde.2010.02.010.  Google Scholar

[13]

S. M. Henson and J. M. Cushing, Hierarchical models of intra-specific competition: Scramble versus contest,, J. Math. Biol., 34 (1996), 755.   Google Scholar

[14]

E. A. Kraev, Existence and uniqueness for height structured hierarchical populations models,, Natural Resource Modeling, 14 (2001), 45.  doi: 10.1111/j.1939-7445.2001.tb00050.x.  Google Scholar

[15]

S. Kruskov, First-order quasilinear equations in several independent variables,, Mat. Sb., 123 (1970), 228.   Google Scholar

[16]

J. Shen, C.-W. Shu and M. Zhang, High resolution schemes for a hierarchical size-structured model,, SIAM J. Numer. Anal., 45 (2007), 352.  doi: 10.1137/050638126.  Google Scholar

[17]

C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes,, J. Comput. Phys., 77 (1988), 439.  doi: 10.1016/0021-9991(88)90177-5.  Google Scholar

[18]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer-Verlag, (1994).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

show all references

References:
[1]

A. S. Ackleh, L. J. S. Allen and J. Carter, Establishing a beachhead: A stochastic population model with an allee effect applied to species invasion,, Theor. Popul. Biol., 71 (2007), 290.  doi: 10.1016/j.tpb.2006.12.006.  Google Scholar

[2]

A. S. Ackleh, K. Deng and S. Hu, A quasilinear hierarchical size structured model: Well-posedness and approximation,, Appl. Math. Optim., 51 (2005), 35.  doi: 10.1007/s00245-004-0806-2.  Google Scholar

[3]

A. S. Ackleh and K. Ito, A finite difference scheme for the nonlinear-size structured population model,, J. Num. Funct. Anal. Optimization, 18 (1997), 865.  doi: 10.1080/01630569708816798.  Google Scholar

[4]

A. S. Ackleh and K. Ito, Measure-valued solutions for a hierarchically size-structured population,, J. Differential Equations, 217 (2005), 431.  doi: 10.1016/j.jde.2004.12.013.  Google Scholar

[5]

K. W. Blayneh, Hierarchical size-structured population model,, Dynamic Systems Appl., 9 (2000), 527.   Google Scholar

[6]

A. Calsina and J. Saldana, Asymptotic behaviour of a model of hierarchically structured population,, J. Math. Biol., 35 (1997), 967.  doi: 10.1007/s002850050085.  Google Scholar

[7]

J. A. Carrillo, R. M. Colombo, P. Gwiazda and A. Ulikowska, Structured populations, cell growth and measure valued balance laws,, J. Differetial Equations, 252 (2012), 3245.  doi: 10.1016/j.jde.2011.11.003.  Google Scholar

[8]

J. A. Carrillo, P. Gwiazda and A. Ulikowska, Splitting-particle methods for structured population models: Convergence and applications,, Math. Models Methods Appl. Sci., 24 (2014), 2171.  doi: 10.1142/S0218202514500183.  Google Scholar

[9]

J. M. Cushing, The dynamics of hierarchical age-structured populations,, J. Math. Biol., 32 (1994), 705.  doi: 10.1007/BF00163023.  Google Scholar

[10]

O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz and H. R. Thieme, On the formulation and analysis of general deterministic structured population models, II Nonlinear theory,, J. Math. Biol., 43 (2001), 157.  doi: 10.1007/s002850170002.  Google Scholar

[11]

P. Gwiazda, J. Jablonski, A. Marciniak-Czochra and A. Ulikowska, Analysis of particle methods for structured population models with nonlocal boundary term in the framework of bounded Lipschitz distance,, Num. Meth. Partial Diff. Eq., 30 (2014), 1797.  doi: 10.1002/num.21879.  Google Scholar

[12]

P. Gwiazda, T. Lorenz and A. Marciniak-Czochra, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients,, J. Differential Equations, 248 (2010), 2703.  doi: 10.1016/j.jde.2010.02.010.  Google Scholar

[13]

S. M. Henson and J. M. Cushing, Hierarchical models of intra-specific competition: Scramble versus contest,, J. Math. Biol., 34 (1996), 755.   Google Scholar

[14]

E. A. Kraev, Existence and uniqueness for height structured hierarchical populations models,, Natural Resource Modeling, 14 (2001), 45.  doi: 10.1111/j.1939-7445.2001.tb00050.x.  Google Scholar

[15]

S. Kruskov, First-order quasilinear equations in several independent variables,, Mat. Sb., 123 (1970), 228.   Google Scholar

[16]

J. Shen, C.-W. Shu and M. Zhang, High resolution schemes for a hierarchical size-structured model,, SIAM J. Numer. Anal., 45 (2007), 352.  doi: 10.1137/050638126.  Google Scholar

[17]

C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes,, J. Comput. Phys., 77 (1988), 439.  doi: 10.1016/0021-9991(88)90177-5.  Google Scholar

[18]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer-Verlag, (1994).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[1]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[2]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[3]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[4]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[5]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[6]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[7]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[8]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[9]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[10]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[11]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[12]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[13]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[14]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[15]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[16]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[17]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[18]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[19]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[20]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

[Back to Top]