Citation: |
[1] |
D. Amadori and W. Shen, An integro-differential conservation law arising in a model of granular flow, J. Hyperbolic Differ. Equ., 9 (2012), 105-131.doi: 10.1142/S0219891612500038. |
[2] |
B. Andreianov, C. Donadello, U. Razafison and M. D. Rosini, Numerical simulations for conservation laws with non-local point constraints in crowd dynamics, In preparation, 2014. |
[3] |
B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws, Numerische Mathematik, 115 (2010), 609-645.doi: 10.1007/s00211-009-0286-7. |
[4] |
B. Andreianov, C. Donadello and M. D. Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop, Mathematical Models and Methods in Applied Sciences, 24 (2014), 2685-2722.doi: 10.1142/S0218202514500341. |
[5] |
A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000. |
[6] |
E. M. Cepolina, Phased evacuation: An optimisation model which takes into account the capacity drop phenomenon in pedestrian flows, Fire Safety Journal, 44 (2009), 532-544.doi: 10.1016/j.firesaf.2008.11.002. |
[7] |
R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675.doi: 10.1016/j.jde.2006.10.014. |
[8] |
R. M. Colombo and F. S. Priuli, Characterization of Riemann solvers for the two phase p-system, Comm. Partial Differential Equations, 28 (2003), 1371-1389.doi: 10.1081/PDE-120024372. |
[9] |
R. M. Colombo and M. D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567.doi: 10.1002/mma.624. |
[10] |
R. M. Colombo and M. D. Rosini, Existence of nonclassical solutions in a Pedestrian flow model, Nonlinear Analysis: Real World Applications, 10 (2009), 2716-2728.doi: 10.1016/j.nonrwa.2008.08.002. |
[11] |
C. M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38 (1972), 33-41.doi: 10.1016/0022-247X(72)90114-X. |
[12] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften, 325, Springer-Verlag, Berlin, 2000.doi: 10.1007/3-540-29089-3_14. |
[13] |
C. M. Dafermos and L. Hsiao, Hyperbolic systems and balance laws with inhomogeneity and dissipation, Indiana Univ. Math. J., 31 (1982), 471-491.doi: 10.1512/iumj.1982.31.31039. |
[14] |
N. El-Khatib, P. Goatin and M. D. Rosini, On entropy weak solutions of Hughes' model for pedestrian motion, Zeitschrift für angewandte Mathematik und Physik, 64 (2013), 223-251.doi: 10.1007/s00033-012-0232-x. |
[15] |
E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, 18, Springer-Verlag, New York, 1996.doi: 10.1007/978-1-4612-0713-9. |
[16] |
E. Isaacson and B. Temple, Convergence of the $2\times 2$ Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math., 55 (1995), 625-640.doi: 10.1137/S0036139992240711. |
[17] |
S. N. Kružhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255. |
[18] |
P. G. Lefloch, Hyperbolic Systems of Conservation Laws, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2002.doi: 10.1007/978-3-0348-8150-0. |
[19] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.doi: 10.1017/CBO9780511791253. |
[20] |
M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.doi: 10.1098/rspa.1955.0089. |
[21] |
E. Y. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ. Equ., 4 (2007), 729-770.doi: 10.1142/S0219891607001343. |
[22] |
P. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.doi: 10.1287/opre.4.1.42. |
[23] |
M. D. Rosini, Nonclassical interactions portrait in a macroscopic pedestrian flow model, J. Differential Equations, 246 (2009), 408-427.doi: 10.1016/j.jde.2008.03.018. |
[24] |
A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., 160 (2001), 181-193.doi: 10.1007/s002050100157. |