2015, 12(2): 279-290. doi: 10.3934/mbe.2015.12.279

A note on modelling with measures: Two-features balance equations

1. 

Center for Industrial Mathematics, University of Bremen, Bibliothekstrasse 1, D-28359 Bremen, Germany, Germany

Received  April 2014 Revised  October 2014 Published  December 2014

In this note we explain by an example what we understand by a balance situation and by a balance equation in terms of measures.
    The latter ones are an attempt to start modelling of (not only) diffusion-reaction or mass-conservation scenarios in terms of measures rather than by derivatives and other rates.
    By means of three examples this concept is extended to two-features (= two-traits-) balance situations, which, e.g., combine features like aging and physical motion in populations or physical motion and formation of polymers by means of a single model equation.
Citation: Michael Böhm, Martin Höpker. A note on modelling with measures: Two-features balance equations. Mathematical Biosciences & Engineering, 2015, 12 (2) : 279-290. doi: 10.3934/mbe.2015.12.279
References:
[1]

V. Agoshkov, Boundary Value Problems for Transport Equations,, BirkhäuserBoston, (1998).  doi: 10.1007/978-1-4612-1994-1.  Google Scholar

[2]

M. Böhm, Mathematical Modelling,, Lecture Notes, ().   Google Scholar

[3]

P. R. Halmos, Measure Theory,, Springer, (1974).   Google Scholar

[4]

P. M. Gschwend and M. D. Reynolds, Monodisperse ferrous phosphate colloids in an anoxic groundwater plume,, Journal of Contaminant Hydrology, 1 (1987), 309.  doi: 10.1016/0169-7722(87)90011-8.  Google Scholar

[5]

O. Krehel, A. Muntean and P. Knabner, On Modeling and Simulation of Flocculation in Porous Media,, XIX International Conference on Water Resources, (2012).   Google Scholar

[6]

A. Marzocchi and A. Musesti, Decomposition and integral representation of Cauchy interactions associated with measures,, Continuum Mech. Thermodyn., 13 (2001), 149.  doi: 10.1007/s001610100046.  Google Scholar

[7]

A. Muntean, E. N. M. Cirillo, O. Krehel and M. Böhm, Pedestrians moving in the dark: Balancing measures and playing games on lattices,, Collective Dynamics from Bacteria to Crowds, 553 (2014), 75.  doi: 10.1007/978-3-7091-1785-9_3.  Google Scholar

[8]

F. Schuricht, A new mathematical foundation for contact interactions in continuum physics,, Arch. Ration. Mech. Anal., 1984 (2007), 169.   Google Scholar

[9]

R. Segev, The geometry of Cauchy fluxes,, Arch. Rational Mech. Anal., 154 (2000), 183.  doi: 10.1007/s002050000089.  Google Scholar

[10]

M. Šilhavý, The Mechanics and Thermodynamics of Continuous Media,, Springer, (1997).  doi: 10.1007/978-3-662-03389-0.  Google Scholar

[11]

S. Slomkowski, J. Alemán, R. G. Gilbert, M. Hess, K. Horie, R. G. Jones, P. Kubisa, I. Meisel, W. Mormann, S. Penczek and R. F. T. Stepto, Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011),, Pure and Applied Chemistry, 83 (2011), 2229.  doi: 10.1351/PAC-REC-10-06-03.  Google Scholar

[12]

R. Temam and A. Miranville, Mathematical Modeling in Continuum Mechanics,, $2^{nd}$ edition, (2001).   Google Scholar

[13]

C. Truesdell, A First Course in Rational Continuum Mechanics,, $1^{st}$ edition, (1991).   Google Scholar

show all references

References:
[1]

V. Agoshkov, Boundary Value Problems for Transport Equations,, BirkhäuserBoston, (1998).  doi: 10.1007/978-1-4612-1994-1.  Google Scholar

[2]

M. Böhm, Mathematical Modelling,, Lecture Notes, ().   Google Scholar

[3]

P. R. Halmos, Measure Theory,, Springer, (1974).   Google Scholar

[4]

P. M. Gschwend and M. D. Reynolds, Monodisperse ferrous phosphate colloids in an anoxic groundwater plume,, Journal of Contaminant Hydrology, 1 (1987), 309.  doi: 10.1016/0169-7722(87)90011-8.  Google Scholar

[5]

O. Krehel, A. Muntean and P. Knabner, On Modeling and Simulation of Flocculation in Porous Media,, XIX International Conference on Water Resources, (2012).   Google Scholar

[6]

A. Marzocchi and A. Musesti, Decomposition and integral representation of Cauchy interactions associated with measures,, Continuum Mech. Thermodyn., 13 (2001), 149.  doi: 10.1007/s001610100046.  Google Scholar

[7]

A. Muntean, E. N. M. Cirillo, O. Krehel and M. Böhm, Pedestrians moving in the dark: Balancing measures and playing games on lattices,, Collective Dynamics from Bacteria to Crowds, 553 (2014), 75.  doi: 10.1007/978-3-7091-1785-9_3.  Google Scholar

[8]

F. Schuricht, A new mathematical foundation for contact interactions in continuum physics,, Arch. Ration. Mech. Anal., 1984 (2007), 169.   Google Scholar

[9]

R. Segev, The geometry of Cauchy fluxes,, Arch. Rational Mech. Anal., 154 (2000), 183.  doi: 10.1007/s002050000089.  Google Scholar

[10]

M. Šilhavý, The Mechanics and Thermodynamics of Continuous Media,, Springer, (1997).  doi: 10.1007/978-3-662-03389-0.  Google Scholar

[11]

S. Slomkowski, J. Alemán, R. G. Gilbert, M. Hess, K. Horie, R. G. Jones, P. Kubisa, I. Meisel, W. Mormann, S. Penczek and R. F. T. Stepto, Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011),, Pure and Applied Chemistry, 83 (2011), 2229.  doi: 10.1351/PAC-REC-10-06-03.  Google Scholar

[12]

R. Temam and A. Miranville, Mathematical Modeling in Continuum Mechanics,, $2^{nd}$ edition, (2001).   Google Scholar

[13]

C. Truesdell, A First Course in Rational Continuum Mechanics,, $1^{st}$ edition, (1991).   Google Scholar

[1]

Raz Kupferman, Asaf Shachar. On strain measures and the geodesic distance to $SO_n$ in the general linear group. Journal of Geometric Mechanics, 2016, 8 (4) : 437-460. doi: 10.3934/jgm.2016015

[2]

Yanni Zeng. LP decay for general hyperbolic-parabolic systems of balance laws. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 363-396. doi: 10.3934/dcds.2018018

[3]

Arno Berger, Roland Zweimüller. Invariant measures for general induced maps and towers. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3885-3901. doi: 10.3934/dcds.2013.33.3885

[4]

Émilie Chouzenoux, Henri Gérard, Jean-Christophe Pesquet. General risk measures for robust machine learning. Foundations of Data Science, 2019, 1 (3) : 249-269. doi: 10.3934/fods.2019011

[5]

Xin Zhong. Singularity formation to the two-dimensional non-barotropic non-resistive magnetohydrodynamic equations with zero heat conduction in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019209

[6]

Moshe Marcus. Remarks on nonlinear equations with measures. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1745-1753. doi: 10.3934/cpaa.2013.12.1745

[7]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

[8]

Xiankun Ren. Periodic measures are dense in invariant measures for residually finite amenable group actions with specification. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1657-1667. doi: 10.3934/dcds.2018068

[9]

R. V. Gurjar, Mariusz Koras and Peter Russell. Two dimensional quotients of $CC^n$ by a reductive group. Electronic Research Announcements, 2008, 15: 62-64. doi: 10.3934/era.2008.15.62

[10]

George Ballinger, Xinzhi Liu. Boundedness criteria in terms of two measures for impulsive systems. Conference Publications, 1998, 1998 (Special) : 79-88. doi: 10.3934/proc.1998.1998.79

[11]

Yong Huang, Lu Xu. Two problems related to prescribed curvature measures. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1975-1986. doi: 10.3934/dcds.2013.33.1975

[12]

Guanqi Liu, Yuwen Wang. Pattern formation of a coupled two-cell Schnakenberg model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1051-1062. doi: 10.3934/dcdss.2017056

[13]

Songbai Guo, Wanbiao Ma. Global dynamics of a microorganism flocculation model with time delay. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1883-1891. doi: 10.3934/cpaa.2017091

[14]

Leonid A. Bunimovich, Alex Yurchenko. Deterministic walks in rigid environments with aging. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 37-46. doi: 10.3934/dcdsb.2008.9.37

[15]

Dianmo Li, Zengxiang Gao, Zufei Ma, Baoyu Xie, Zhengjun Wang. Two general models for the simulation of insect population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 623-628. doi: 10.3934/dcdsb.2004.4.623

[16]

P. Smoczynski, Mohamed Aly Tawhid. Two numerical schemes for general variational inequalities. Journal of Industrial & Management Optimization, 2008, 4 (2) : 393-406. doi: 10.3934/jimo.2008.4.393

[17]

Lin Zhao, Zhi-Cheng Wang, Liang Zhang. Threshold dynamics of a time periodic and two–group epidemic model with distributed delay. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1535-1563. doi: 10.3934/mbe.2017080

[18]

Mamadou L. Diagne, Ousmane Seydi, Aissata A. B. Sy. A two-group age of infection epidemic model with periodic behavioral changes. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019202

[19]

Gunduz Caginalp, Mark DeSantis. Multi-group asset flow equations and stability. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 109-150. doi: 10.3934/dcdsb.2011.16.109

[20]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]