Advanced Search
Article Contents
Article Contents

A note on modelling with measures: Two-features balance equations

Abstract Related Papers Cited by
  • In this note we explain by an example what we understand by a balance situation and by a balance equation in terms of measures.
        The latter ones are an attempt to start modelling of (not only) diffusion-reaction or mass-conservation scenarios in terms of measures rather than by derivatives and other rates.
        By means of three examples this concept is extended to two-features (= two-traits-) balance situations, which, e.g., combine features like aging and physical motion in populations or physical motion and formation of polymers by means of a single model equation.
    Mathematics Subject Classification: Primary: 00A71, 35L65; Secondary: 92D25.


    \begin{equation} \\ \end{equation}
  • [1]

    V. Agoshkov, Boundary Value Problems for Transport Equations, BirkhäuserBoston, Inc., Boston, MA, 1998.doi: 10.1007/978-1-4612-1994-1.


    M. BöhmMathematical Modelling, Lecture Notes, in preparation.


    P. R. Halmos, Measure Theory, Springer, 1974.


    P. M. Gschwend and M. D. Reynolds, Monodisperse ferrous phosphate colloids in an anoxic groundwater plume, Journal of Contaminant Hydrology, 1 (1987), 309-327.doi: 10.1016/0169-7722(87)90011-8.


    O. Krehel, A. Muntean and P. Knabner, On Modeling and Simulation of Flocculation in Porous Media, XIX International Conference on Water Resources, CMWR, 2012.


    A. Marzocchi and A. Musesti, Decomposition and integral representation of Cauchy interactions associated with measures, Continuum Mech. Thermodyn., 13 (2001), 149-169.doi: 10.1007/s001610100046.


    A. Muntean, E. N. M. Cirillo, O. Krehel and M. Böhm, Pedestrians moving in the dark: Balancing measures and playing games on lattices, Collective Dynamics from Bacteria to Crowds, CISM International Centre for Mechanical Sciences, 553 (2014), 75-103.doi: 10.1007/978-3-7091-1785-9_3.


    F. Schuricht, A new mathematical foundation for contact interactions in continuum physics, Arch. Ration. Mech. Anal., 1984 (2007), 169-196.


    R. Segev, The geometry of Cauchy fluxes, Arch. Rational Mech. Anal., 154 (2000), 183-198.doi: 10.1007/s002050000089.


    M. Šilhavý, The Mechanics and Thermodynamics of Continuous Media, Springer, Berlin, 1997.doi: 10.1007/978-3-662-03389-0.


    S. Slomkowski, J. Alemán, R. G. Gilbert, M. Hess, K. Horie, R. G. Jones, P. Kubisa, I. Meisel, W. Mormann, S. Penczek and R. F. T. Stepto, Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011), Pure and Applied Chemistry, 83 (2011), 2229-2259.doi: 10.1351/PAC-REC-10-06-03.


    R. Temam and A. Miranville, Mathematical Modeling in Continuum Mechanics, $2^{nd}$ edition, Cambridge University Press, 2001.


    C. Truesdell, A First Course in Rational Continuum Mechanics, $1^{st}$ edition, AcademicPress, Boston, 1991.

  • 加载中
Open Access Under a Creative Commons license

Article Metrics

HTML views() PDF downloads(40) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint