\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A note on modelling with measures: Two-features balance equations

Abstract Related Papers Cited by
  • In this note we explain by an example what we understand by a balance situation and by a balance equation in terms of measures.
        The latter ones are an attempt to start modelling of (not only) diffusion-reaction or mass-conservation scenarios in terms of measures rather than by derivatives and other rates.
        By means of three examples this concept is extended to two-features (= two-traits-) balance situations, which, e.g., combine features like aging and physical motion in populations or physical motion and formation of polymers by means of a single model equation.
    Mathematics Subject Classification: Primary: 00A71, 35L65; Secondary: 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. Agoshkov, Boundary Value Problems for Transport Equations, BirkhäuserBoston, Inc., Boston, MA, 1998.doi: 10.1007/978-1-4612-1994-1.

    [2]

    M. BöhmMathematical Modelling, Lecture Notes, in preparation.

    [3]

    P. R. Halmos, Measure Theory, Springer, 1974.

    [4]

    P. M. Gschwend and M. D. Reynolds, Monodisperse ferrous phosphate colloids in an anoxic groundwater plume, Journal of Contaminant Hydrology, 1 (1987), 309-327.doi: 10.1016/0169-7722(87)90011-8.

    [5]

    O. Krehel, A. Muntean and P. Knabner, On Modeling and Simulation of Flocculation in Porous Media, XIX International Conference on Water Resources, CMWR, 2012.

    [6]

    A. Marzocchi and A. Musesti, Decomposition and integral representation of Cauchy interactions associated with measures, Continuum Mech. Thermodyn., 13 (2001), 149-169.doi: 10.1007/s001610100046.

    [7]

    A. Muntean, E. N. M. Cirillo, O. Krehel and M. Böhm, Pedestrians moving in the dark: Balancing measures and playing games on lattices, Collective Dynamics from Bacteria to Crowds, CISM International Centre for Mechanical Sciences, 553 (2014), 75-103.doi: 10.1007/978-3-7091-1785-9_3.

    [8]

    F. Schuricht, A new mathematical foundation for contact interactions in continuum physics, Arch. Ration. Mech. Anal., 1984 (2007), 169-196.

    [9]

    R. Segev, The geometry of Cauchy fluxes, Arch. Rational Mech. Anal., 154 (2000), 183-198.doi: 10.1007/s002050000089.

    [10]

    M. Šilhavý, The Mechanics and Thermodynamics of Continuous Media, Springer, Berlin, 1997.doi: 10.1007/978-3-662-03389-0.

    [11]

    S. Slomkowski, J. Alemán, R. G. Gilbert, M. Hess, K. Horie, R. G. Jones, P. Kubisa, I. Meisel, W. Mormann, S. Penczek and R. F. T. Stepto, Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011), Pure and Applied Chemistry, 83 (2011), 2229-2259.doi: 10.1351/PAC-REC-10-06-03.

    [12]

    R. Temam and A. Miranville, Mathematical Modeling in Continuum Mechanics, $2^{nd}$ edition, Cambridge University Press, 2001.

    [13]

    C. Truesdell, A First Course in Rational Continuum Mechanics, $1^{st}$ edition, AcademicPress, Boston, 1991.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(40) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return