Citation: |
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd edition, Academic Press, 2003. |
[2] |
F. Baluška, J. Šamaj and D. Menzel, Polar transport of auxin: Carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion?, Trends in Cell Biology, 13 (2003), 282-285. |
[3] |
K. van Berkel, R. J. de Boer, B. Scheres and K. ten Tusscher, Polar auxin transport: Models and mechanisms, Development, 140 (2013), 2253-2268. |
[4] |
L. Boccardo, A. Dall'Aglio, Th. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147 (1997), 237-258.doi: 10.1006/jfan.1996.3040. |
[5] |
K. J. M. Boot, K. R. Libbenga, S. C. Hille, R. Offringa and B. van Duijn, Polar auxin transport: An early invention, Journal of Experimental Botany, 63 (2012), 4213-4218.doi: 10.1093/jxb/ers106. |
[6] |
E. Cancès and C. Le Bris, Mathematical modeling of point defects in materials science, Mathematical Models and Methods in Applied Sciences, 23 (2013), 1795-1859.doi: 10.1142/S0218202513500528. |
[7] |
A. Chavarría-Krauser and M. Ptashnyk, Homogenization of long-range auxin transport in plant tissues, Nonlinear Analysis: Real World Applications, 11 (2010), 4524-4532.doi: 10.1016/j.nonrwa.2008.12.003. |
[8] |
R. Denk, M. Hieber and J. Prüss, $\mathcalR$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Am. Math. Soc., 166 (2003), Viii+114 pp.doi: 10.1090/memo/0788. |
[9] |
R. Denk, M. Hieber and J. Prüss, Optimal $L^p$-$L^q$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224.doi: 10.1007/s00209-007-0120-9. |
[10] |
K.-J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000. |
[11] |
G. B. Folland, Real Analysis: Modern Techniques and Their Applications, 2nd edition, Wiley, New York, 1999. |
[12] |
D. J. Griffiths, Introduction to Electrodynamics, 3rd edition, Pearson Education, 2008. |
[13] |
L. Gulikers, J. H. M. Evers, A. Muntean and A. V. Lyulin, The effect of perception anisotropy on particle systems describing pedestrian flows in corridors, Journal of Statistical Mechanics: Theory and Experiment, 2013 (2013), p04025.doi: 10.1088/1742-5468/2013/04/P04025. |
[14] |
S. C. Hille, Local well-posedness of kinetic chemotaxis models, Journal of Evolution Equations, 8 (2008), 423-448.doi: 10.1007/s00028-008-0358-7. |
[15] |
S. C. Hille and D. T. H. Worm, Embedding of semigroups of Lipschitz maps into positive linear semigroups on ordered Banach spaces generated by measures, Integr. Equ. Oper. Theory, 63 (2009), 351-371.doi: 10.1007/s00020-008-1652-z. |
[16] |
N. Hirokawa, S. Niwa and Y. Tanaka, Molecular motors in neurons: Transport mechanisms and roles in brain function, development, and disease, Neuron, 68 (2010), 610-638.doi: 10.1016/j.neuron.2010.09.039. |
[17] |
J. D. Jackson, Classical Electrodynamics, Second edition, John Wiley and Sons, New York-London-Sydney, 1975. |
[18] |
H. M. Jäger and S. R. Nagel, Physics of the granular state, Science, 255 (1982), 1523-1531. |
[19] |
E. M. Kramer, Computer models of auxin transport: A review and commentary, Journal of Experimental Botany, 59 (2008), 45-53.doi: 10.1093/jxb/erm060. |
[20] |
I. Lasiecka, Unified theory for abstract boundary problems-a semigroup approach, Appl. Math. Optim., 6 (1980), 287-333.doi: 10.1007/BF01442900. |
[21] |
J. D. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer Verlag, 1972.doi: 10.1007/978-3-642-65161-8. |
[22] |
Y. Liu and R. H. Edwards, The role of vesicular transport proteins in synaptic transmission and neural degeneration, Ann. Rev. Neurosci., 20 (1997), 125-156. |
[23] |
R. M. H. Merks, Y. Van de Peer, D. Inzé and G. T. S. Beemster, Canalization without flux sensors: A traveling-wave hypothesis, Trends in Plant Science, 12 (2007), 384-390.doi: 10.1016/j.tplants.2007.08.004. |
[24] |
P. van Meurs, A. Muntean and M. A. Peletier, Upscaling of dislocation walls in finite domains, Eur. J. Appl. Math, 25 (2014), 749-781.doi: 10.1017/S0956792514000254. |
[25] |
D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1991.doi: 10.1007/978-94-011-3562-7. |
[26] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlang, New York, 1983.doi: 10.1007/978-1-4612-5561-1. |
[27] |
J. A. Raven, Polar auxin transport in relation to long-distance transport of nutrients in the Charales, Journal of Experimental Botany, 64 (2013), 1-9.doi: 10.1093/jxb/ers358. |
[28] |
M. Riesz, Sur les fonction conjuguées, Math. Zeit., 27 (1928), 218-244.doi: 10.1007/BF01171098. |
[29] |
U. Rüde, H. Köstler and M. Mohr, Accurate Multigrid Techniques for Computing Singular Solutions of Elliptic Problems, Eleventh Copper Mountain Conference on Multigrid Methods, 2003. |
[30] |
T. I. Seidman, M. K. Gobbert, D. W. Trott and M. Kružík, Finite element approximation for time-dependent diffusion with measure-valued source, Numer. Math., 122 (2012), 709-723.doi: 10.1007/s00211-012-0474-8. |
[31] |
V. A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general form, Trudy Mat. Fust. Steklov, 83 (1965), 3-163 (Russian). Engl. Transl.: Proc. Steklov Inst. Math., 83 (1965), 1-184. |
[32] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970. |