- Previous Article
- MBE Home
- This Issue
-
Next Article
A mixed system modeling two-directional pedestrian flows
A hybrid model for traffic flow and crowd dynamics with random individual properties
1. | Institute for Applied Analysis and Numerical Simulation, University of Stuttgart, D-70569 Stuttgart, Germany |
References:
[1] |
P. Amorim, R. M. Colombo and A. Teixeira, On the numerical integration of scalar conservation laws, preprint, 2013. |
[2] |
A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938 (electronic).
doi: 10.1137/S0036139997332099. |
[3] |
N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci., 18 (2008), 1317-1345.
doi: 10.1142/S0218202508003054. |
[4] |
N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Review, 53 (2011), 409-463.
doi: 10.1137/090746677. |
[5] |
R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of non-local models for pedestrian traffic, Mathematical Models and Methods in the Applied Sciences, 22 (2012), 1150023, 34 p.
doi: 10.1142/S0218202511500230. |
[6] |
R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum, SIAM J. Appl. Dyn. Syst., 11 (2012), 741-770.
doi: 10.1137/110854321. |
[7] |
M. Crandall and A. Majda, The method of fractional steps for conservation laws, Numer. Math., 34 (1980), 285-314.
doi: 10.1007/BF01396704. |
[8] |
E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., 9 (2011), 155-182.
doi: 10.1137/100797515. |
[9] |
C. F. Daganzo, Requiem for second-order fluid approximations to traffic flow, Transp. Res. B, 29 (1995), 277-286.
doi: 10.1016/0191-2615(95)00007-Z. |
[10] |
G. Dal Maso, P. G. Lefloch and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. (9), 74 (1995), 483-548. |
[11] |
D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models, The European Physical Journal B, 69 (2009), 539-548.
doi: 10.1140/epjb/e2009-00192-5. |
[12] |
D. Helbing and A. F. Johansson, On the controversy around Daganzo's requiem for and Aw-Rascle's resurrection of second-order traffic flow models, Modelling and Optimisation of Flows on Networks, (2013), 271-302.
doi: 10.1007/978-3-642-32160-3_4. |
[13] |
R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36 (2002), 507-535.
doi: 10.1016/S0191-2615(01)00015-7. |
[14] |
S. N. Kružhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255. |
[15] |
M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[16] |
S. Mishra and C. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data, Math. Comp., 81 (2012), 1979-2018.
doi: 10.1090/S0025-5718-2012-02574-9. |
[17] |
P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
[18] |
M. Sabry Hassouna and A. A. Farag, Multistencils fast marching methods: A highly accurate solution to the eikonal equation on cartesian domains, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (2007), 1563-1574.
doi: 10.1109/TPAMI.2007.1154. |
[19] |
Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-i. Tadaki and S. Yukawa, Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam, New Journal of Physics, 10 (2008), 033001.
doi: 10.1088/1367-2630/10/3/033001. |
[20] |
S.-i. Tadaki, M. Kikuchi, F. Minoru, A. Nakayama, K. Nishinari, A. Shibata, Y. Sugiyama, T. Yosida and S. Yukawa, Phase transition in traffic jam experiment on a circuit, New Journal of Physics, 15 (2013), 103034.
doi: 10.1088/1367-2630/15/10/103034. |
show all references
References:
[1] |
P. Amorim, R. M. Colombo and A. Teixeira, On the numerical integration of scalar conservation laws, preprint, 2013. |
[2] |
A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938 (electronic).
doi: 10.1137/S0036139997332099. |
[3] |
N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci., 18 (2008), 1317-1345.
doi: 10.1142/S0218202508003054. |
[4] |
N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Review, 53 (2011), 409-463.
doi: 10.1137/090746677. |
[5] |
R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of non-local models for pedestrian traffic, Mathematical Models and Methods in the Applied Sciences, 22 (2012), 1150023, 34 p.
doi: 10.1142/S0218202511500230. |
[6] |
R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum, SIAM J. Appl. Dyn. Syst., 11 (2012), 741-770.
doi: 10.1137/110854321. |
[7] |
M. Crandall and A. Majda, The method of fractional steps for conservation laws, Numer. Math., 34 (1980), 285-314.
doi: 10.1007/BF01396704. |
[8] |
E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul., 9 (2011), 155-182.
doi: 10.1137/100797515. |
[9] |
C. F. Daganzo, Requiem for second-order fluid approximations to traffic flow, Transp. Res. B, 29 (1995), 277-286.
doi: 10.1016/0191-2615(95)00007-Z. |
[10] |
G. Dal Maso, P. G. Lefloch and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. (9), 74 (1995), 483-548. |
[11] |
D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models, The European Physical Journal B, 69 (2009), 539-548.
doi: 10.1140/epjb/e2009-00192-5. |
[12] |
D. Helbing and A. F. Johansson, On the controversy around Daganzo's requiem for and Aw-Rascle's resurrection of second-order traffic flow models, Modelling and Optimisation of Flows on Networks, (2013), 271-302.
doi: 10.1007/978-3-642-32160-3_4. |
[13] |
R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36 (2002), 507-535.
doi: 10.1016/S0191-2615(01)00015-7. |
[14] |
S. N. Kružhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255. |
[15] |
M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[16] |
S. Mishra and C. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data, Math. Comp., 81 (2012), 1979-2018.
doi: 10.1090/S0025-5718-2012-02574-9. |
[17] |
P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
[18] |
M. Sabry Hassouna and A. A. Farag, Multistencils fast marching methods: A highly accurate solution to the eikonal equation on cartesian domains, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (2007), 1563-1574.
doi: 10.1109/TPAMI.2007.1154. |
[19] |
Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-i. Tadaki and S. Yukawa, Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam, New Journal of Physics, 10 (2008), 033001.
doi: 10.1088/1367-2630/10/3/033001. |
[20] |
S.-i. Tadaki, M. Kikuchi, F. Minoru, A. Nakayama, K. Nishinari, A. Shibata, Y. Sugiyama, T. Yosida and S. Yukawa, Phase transition in traffic jam experiment on a circuit, New Journal of Physics, 15 (2013), 103034.
doi: 10.1088/1367-2630/15/10/103034. |
[1] |
Carey Caginalp. A survey of results on conservation laws with deterministic and random initial data. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2043-2069. doi: 10.3934/dcdsb.2018225 |
[2] |
Florent Berthelin, Paola Goatin. Regularity results for the solutions of a non-local model of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3197-3213. doi: 10.3934/dcds.2019132 |
[3] |
Felisia Angela Chiarello, Paola Goatin. Non-local multi-class traffic flow models. Networks and Heterogeneous Media, 2019, 14 (2) : 371-387. doi: 10.3934/nhm.2019015 |
[4] |
Jan Friedrich, Oliver Kolb, Simone Göttlich. A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13 (4) : 531-547. doi: 10.3934/nhm.2018024 |
[5] |
Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks and Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107 |
[6] |
Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028 |
[7] |
Fengbai Li, Feng Rong. Decay of solutions to fractal parabolic conservation laws with large initial data. Communications on Pure and Applied Analysis, 2013, 12 (2) : 973-984. doi: 10.3934/cpaa.2013.12.973 |
[8] |
Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Random dispersal vs. non-local dispersal. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 551-596. doi: 10.3934/dcds.2010.26.551 |
[9] |
Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475 |
[10] |
Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure and Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759 |
[11] |
Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255 |
[12] |
Shixiu Zheng, Zhilei Xu, Huan Yang, Jintao Song, Zhenkuan Pan. Comparisons of different methods for balanced data classification under the discrete non-local total variational framework. Mathematical Foundations of Computing, 2019, 2 (1) : 11-28. doi: 10.3934/mfc.2019002 |
[13] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[14] |
Sebastien Motsch, Mehdi Moussaïd, Elsa G. Guillot, Mathieu Moreau, Julien Pettré, Guy Theraulaz, Cécile Appert-Rolland, Pierre Degond. Modeling crowd dynamics through coarse-grained data analysis. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1271-1290. doi: 10.3934/mbe.2018059 |
[15] |
Yong-Kui Chang, Xiaojing Liu. Time-varying integro-differential inclusions with Clarke sub-differential and non-local initial conditions: existence and approximate controllability. Evolution Equations and Control Theory, 2020, 9 (3) : 845-863. doi: 10.3934/eect.2020036 |
[16] |
Tahir Bachar Issa, Rachidi Bolaji Salako. Asymptotic dynamics in a two-species chemotaxis model with non-local terms. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3839-3874. doi: 10.3934/dcdsb.2017193 |
[17] |
Stefano Bianchini. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 329-350. doi: 10.3934/dcds.2000.6.329 |
[18] |
Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8 (2) : 433-463. doi: 10.3934/nhm.2013.8.433 |
[19] |
Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang. Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks and Heterogeneous Media, 2015, 10 (4) : 749-785. doi: 10.3934/nhm.2015.10.749 |
[20] |
Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems and Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]