2015, 12(2): 393-413. doi: 10.3934/mbe.2015.12.393

A hybrid model for traffic flow and crowd dynamics with random individual properties

1. 

Institute for Applied Analysis and Numerical Simulation, University of Stuttgart, D-70569 Stuttgart, Germany

Received  April 2014 Revised  June 2014 Published  December 2014

Based on an established mathematical model for the behavior of large crowds, a new model is derived that is able to take into account the statistical variation of individual maximum walking speeds. The same model is shown to be valid also in traffic flow situations, where for instance the statistical variation of preferred maximum speeds can be considered. The model involves explicit bounds on the state variables, such that a special Riemann solver is derived that is proved to respect the state constraints. Some care is devoted to a valid construction of random initial data, necessary for the use of the new model. The article also includes a numerical method that is shown to respect the bounds on the state variables and illustrative numerical examples, explaining the properties of the new model in comparison with established models.
Citation: Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393
References:
[1]

P. Amorim, R. M. Colombo and A. Teixeira, On the numerical integration of scalar conservation laws,, preprint, (2013).   Google Scholar

[2]

A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow,, SIAM J. Appl. Math., 60 (2000), 916.  doi: 10.1137/S0036139997332099.  Google Scholar

[3]

N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models,, Math. Models Methods Appl. Sci., 18 (2008), 1317.  doi: 10.1142/S0218202508003054.  Google Scholar

[4]

N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives,, SIAM Review, 53 (2011), 409.  doi: 10.1137/090746677.  Google Scholar

[5]

R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of non-local models for pedestrian traffic,, Mathematical Models and Methods in the Applied Sciences, 22 (2012).  doi: 10.1142/S0218202511500230.  Google Scholar

[6]

R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum,, SIAM J. Appl. Dyn. Syst., 11 (2012), 741.  doi: 10.1137/110854321.  Google Scholar

[7]

M. Crandall and A. Majda, The method of fractional steps for conservation laws,, Numer. Math., 34 (1980), 285.  doi: 10.1007/BF01396704.  Google Scholar

[8]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics,, Multiscale Model. Simul., 9 (2011), 155.  doi: 10.1137/100797515.  Google Scholar

[9]

C. F. Daganzo, Requiem for second-order fluid approximations to traffic flow,, Transp. Res. B, 29 (1995), 277.  doi: 10.1016/0191-2615(95)00007-Z.  Google Scholar

[10]

G. Dal Maso, P. G. Lefloch and F. Murat, Definition and weak stability of nonconservative products,, J. Math. Pures Appl. (9), 74 (1995), 483.   Google Scholar

[11]

D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models,, The European Physical Journal B, 69 (2009), 539.  doi: 10.1140/epjb/e2009-00192-5.  Google Scholar

[12]

D. Helbing and A. F. Johansson, On the controversy around Daganzo's requiem for and Aw-Rascle's resurrection of second-order traffic flow models,, Modelling and Optimisation of Flows on Networks, (2013), 271.  doi: 10.1007/978-3-642-32160-3_4.  Google Scholar

[13]

R. L. Hughes, A continuum theory for the flow of pedestrians,, Transportation Research Part B: Methodological, 36 (2002), 507.  doi: 10.1016/S0191-2615(01)00015-7.  Google Scholar

[14]

S. N. Kružhkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228.   Google Scholar

[15]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[16]

S. Mishra and C. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data,, Math. Comp., 81 (2012), 1979.  doi: 10.1090/S0025-5718-2012-02574-9.  Google Scholar

[17]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[18]

M. Sabry Hassouna and A. A. Farag, Multistencils fast marching methods: A highly accurate solution to the eikonal equation on cartesian domains,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (2007), 1563.  doi: 10.1109/TPAMI.2007.1154.  Google Scholar

[19]

Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-i. Tadaki and S. Yukawa, Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam,, New Journal of Physics, 10 (2008).  doi: 10.1088/1367-2630/10/3/033001.  Google Scholar

[20]

S.-i. Tadaki, M. Kikuchi, F. Minoru, A. Nakayama, K. Nishinari, A. Shibata, Y. Sugiyama, T. Yosida and S. Yukawa, Phase transition in traffic jam experiment on a circuit,, New Journal of Physics, 15 (2013).  doi: 10.1088/1367-2630/15/10/103034.  Google Scholar

show all references

References:
[1]

P. Amorim, R. M. Colombo and A. Teixeira, On the numerical integration of scalar conservation laws,, preprint, (2013).   Google Scholar

[2]

A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow,, SIAM J. Appl. Math., 60 (2000), 916.  doi: 10.1137/S0036139997332099.  Google Scholar

[3]

N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models,, Math. Models Methods Appl. Sci., 18 (2008), 1317.  doi: 10.1142/S0218202508003054.  Google Scholar

[4]

N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives,, SIAM Review, 53 (2011), 409.  doi: 10.1137/090746677.  Google Scholar

[5]

R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of non-local models for pedestrian traffic,, Mathematical Models and Methods in the Applied Sciences, 22 (2012).  doi: 10.1142/S0218202511500230.  Google Scholar

[6]

R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum,, SIAM J. Appl. Dyn. Syst., 11 (2012), 741.  doi: 10.1137/110854321.  Google Scholar

[7]

M. Crandall and A. Majda, The method of fractional steps for conservation laws,, Numer. Math., 34 (1980), 285.  doi: 10.1007/BF01396704.  Google Scholar

[8]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics,, Multiscale Model. Simul., 9 (2011), 155.  doi: 10.1137/100797515.  Google Scholar

[9]

C. F. Daganzo, Requiem for second-order fluid approximations to traffic flow,, Transp. Res. B, 29 (1995), 277.  doi: 10.1016/0191-2615(95)00007-Z.  Google Scholar

[10]

G. Dal Maso, P. G. Lefloch and F. Murat, Definition and weak stability of nonconservative products,, J. Math. Pures Appl. (9), 74 (1995), 483.   Google Scholar

[11]

D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models,, The European Physical Journal B, 69 (2009), 539.  doi: 10.1140/epjb/e2009-00192-5.  Google Scholar

[12]

D. Helbing and A. F. Johansson, On the controversy around Daganzo's requiem for and Aw-Rascle's resurrection of second-order traffic flow models,, Modelling and Optimisation of Flows on Networks, (2013), 271.  doi: 10.1007/978-3-642-32160-3_4.  Google Scholar

[13]

R. L. Hughes, A continuum theory for the flow of pedestrians,, Transportation Research Part B: Methodological, 36 (2002), 507.  doi: 10.1016/S0191-2615(01)00015-7.  Google Scholar

[14]

S. N. Kružhkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228.   Google Scholar

[15]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[16]

S. Mishra and C. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data,, Math. Comp., 81 (2012), 1979.  doi: 10.1090/S0025-5718-2012-02574-9.  Google Scholar

[17]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42.  doi: 10.1287/opre.4.1.42.  Google Scholar

[18]

M. Sabry Hassouna and A. A. Farag, Multistencils fast marching methods: A highly accurate solution to the eikonal equation on cartesian domains,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (2007), 1563.  doi: 10.1109/TPAMI.2007.1154.  Google Scholar

[19]

Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-i. Tadaki and S. Yukawa, Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam,, New Journal of Physics, 10 (2008).  doi: 10.1088/1367-2630/10/3/033001.  Google Scholar

[20]

S.-i. Tadaki, M. Kikuchi, F. Minoru, A. Nakayama, K. Nishinari, A. Shibata, Y. Sugiyama, T. Yosida and S. Yukawa, Phase transition in traffic jam experiment on a circuit,, New Journal of Physics, 15 (2013).  doi: 10.1088/1367-2630/15/10/103034.  Google Scholar

[1]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[2]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[3]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[4]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[5]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[6]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[7]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[8]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021005

[9]

Joan Carles Tatjer, Arturo Vieiro. Dynamics of the QR-flow for upper Hessenberg real matrices. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1359-1403. doi: 10.3934/dcdsb.2020166

[10]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284

[11]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[12]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[13]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[14]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[15]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[16]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[17]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021004

[18]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[19]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[20]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]