2015, 12(2): 393-413. doi: 10.3934/mbe.2015.12.393

A hybrid model for traffic flow and crowd dynamics with random individual properties

1. 

Institute for Applied Analysis and Numerical Simulation, University of Stuttgart, D-70569 Stuttgart, Germany

Received  April 2014 Revised  June 2014 Published  December 2014

Based on an established mathematical model for the behavior of large crowds, a new model is derived that is able to take into account the statistical variation of individual maximum walking speeds. The same model is shown to be valid also in traffic flow situations, where for instance the statistical variation of preferred maximum speeds can be considered. The model involves explicit bounds on the state variables, such that a special Riemann solver is derived that is proved to respect the state constraints. Some care is devoted to a valid construction of random initial data, necessary for the use of the new model. The article also includes a numerical method that is shown to respect the bounds on the state variables and illustrative numerical examples, explaining the properties of the new model in comparison with established models.
Citation: Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393
References:
[1]

P. Amorim, R. M. Colombo and A. Teixeira, On the numerical integration of scalar conservation laws,, preprint, (2013). Google Scholar

[2]

A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow,, SIAM J. Appl. Math., 60 (2000), 916. doi: 10.1137/S0036139997332099. Google Scholar

[3]

N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models,, Math. Models Methods Appl. Sci., 18 (2008), 1317. doi: 10.1142/S0218202508003054. Google Scholar

[4]

N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives,, SIAM Review, 53 (2011), 409. doi: 10.1137/090746677. Google Scholar

[5]

R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of non-local models for pedestrian traffic,, Mathematical Models and Methods in the Applied Sciences, 22 (2012). doi: 10.1142/S0218202511500230. Google Scholar

[6]

R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum,, SIAM J. Appl. Dyn. Syst., 11 (2012), 741. doi: 10.1137/110854321. Google Scholar

[7]

M. Crandall and A. Majda, The method of fractional steps for conservation laws,, Numer. Math., 34 (1980), 285. doi: 10.1007/BF01396704. Google Scholar

[8]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics,, Multiscale Model. Simul., 9 (2011), 155. doi: 10.1137/100797515. Google Scholar

[9]

C. F. Daganzo, Requiem for second-order fluid approximations to traffic flow,, Transp. Res. B, 29 (1995), 277. doi: 10.1016/0191-2615(95)00007-Z. Google Scholar

[10]

G. Dal Maso, P. G. Lefloch and F. Murat, Definition and weak stability of nonconservative products,, J. Math. Pures Appl. (9), 74 (1995), 483. Google Scholar

[11]

D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models,, The European Physical Journal B, 69 (2009), 539. doi: 10.1140/epjb/e2009-00192-5. Google Scholar

[12]

D. Helbing and A. F. Johansson, On the controversy around Daganzo's requiem for and Aw-Rascle's resurrection of second-order traffic flow models,, Modelling and Optimisation of Flows on Networks, (2013), 271. doi: 10.1007/978-3-642-32160-3_4. Google Scholar

[13]

R. L. Hughes, A continuum theory for the flow of pedestrians,, Transportation Research Part B: Methodological, 36 (2002), 507. doi: 10.1016/S0191-2615(01)00015-7. Google Scholar

[14]

S. N. Kružhkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228. Google Scholar

[15]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317. doi: 10.1098/rspa.1955.0089. Google Scholar

[16]

S. Mishra and C. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data,, Math. Comp., 81 (2012), 1979. doi: 10.1090/S0025-5718-2012-02574-9. Google Scholar

[17]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42. doi: 10.1287/opre.4.1.42. Google Scholar

[18]

M. Sabry Hassouna and A. A. Farag, Multistencils fast marching methods: A highly accurate solution to the eikonal equation on cartesian domains,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (2007), 1563. doi: 10.1109/TPAMI.2007.1154. Google Scholar

[19]

Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-i. Tadaki and S. Yukawa, Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam,, New Journal of Physics, 10 (2008). doi: 10.1088/1367-2630/10/3/033001. Google Scholar

[20]

S.-i. Tadaki, M. Kikuchi, F. Minoru, A. Nakayama, K. Nishinari, A. Shibata, Y. Sugiyama, T. Yosida and S. Yukawa, Phase transition in traffic jam experiment on a circuit,, New Journal of Physics, 15 (2013). doi: 10.1088/1367-2630/15/10/103034. Google Scholar

show all references

References:
[1]

P. Amorim, R. M. Colombo and A. Teixeira, On the numerical integration of scalar conservation laws,, preprint, (2013). Google Scholar

[2]

A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow,, SIAM J. Appl. Math., 60 (2000), 916. doi: 10.1137/S0036139997332099. Google Scholar

[3]

N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models,, Math. Models Methods Appl. Sci., 18 (2008), 1317. doi: 10.1142/S0218202508003054. Google Scholar

[4]

N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives,, SIAM Review, 53 (2011), 409. doi: 10.1137/090746677. Google Scholar

[5]

R. M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of non-local models for pedestrian traffic,, Mathematical Models and Methods in the Applied Sciences, 22 (2012). doi: 10.1142/S0218202511500230. Google Scholar

[6]

R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum,, SIAM J. Appl. Dyn. Syst., 11 (2012), 741. doi: 10.1137/110854321. Google Scholar

[7]

M. Crandall and A. Majda, The method of fractional steps for conservation laws,, Numer. Math., 34 (1980), 285. doi: 10.1007/BF01396704. Google Scholar

[8]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics,, Multiscale Model. Simul., 9 (2011), 155. doi: 10.1137/100797515. Google Scholar

[9]

C. F. Daganzo, Requiem for second-order fluid approximations to traffic flow,, Transp. Res. B, 29 (1995), 277. doi: 10.1016/0191-2615(95)00007-Z. Google Scholar

[10]

G. Dal Maso, P. G. Lefloch and F. Murat, Definition and weak stability of nonconservative products,, J. Math. Pures Appl. (9), 74 (1995), 483. Google Scholar

[11]

D. Helbing, Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models,, The European Physical Journal B, 69 (2009), 539. doi: 10.1140/epjb/e2009-00192-5. Google Scholar

[12]

D. Helbing and A. F. Johansson, On the controversy around Daganzo's requiem for and Aw-Rascle's resurrection of second-order traffic flow models,, Modelling and Optimisation of Flows on Networks, (2013), 271. doi: 10.1007/978-3-642-32160-3_4. Google Scholar

[13]

R. L. Hughes, A continuum theory for the flow of pedestrians,, Transportation Research Part B: Methodological, 36 (2002), 507. doi: 10.1016/S0191-2615(01)00015-7. Google Scholar

[14]

S. N. Kružhkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228. Google Scholar

[15]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317. doi: 10.1098/rspa.1955.0089. Google Scholar

[16]

S. Mishra and C. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data,, Math. Comp., 81 (2012), 1979. doi: 10.1090/S0025-5718-2012-02574-9. Google Scholar

[17]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42. doi: 10.1287/opre.4.1.42. Google Scholar

[18]

M. Sabry Hassouna and A. A. Farag, Multistencils fast marching methods: A highly accurate solution to the eikonal equation on cartesian domains,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (2007), 1563. doi: 10.1109/TPAMI.2007.1154. Google Scholar

[19]

Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-i. Tadaki and S. Yukawa, Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam,, New Journal of Physics, 10 (2008). doi: 10.1088/1367-2630/10/3/033001. Google Scholar

[20]

S.-i. Tadaki, M. Kikuchi, F. Minoru, A. Nakayama, K. Nishinari, A. Shibata, Y. Sugiyama, T. Yosida and S. Yukawa, Phase transition in traffic jam experiment on a circuit,, New Journal of Physics, 15 (2013). doi: 10.1088/1367-2630/15/10/103034. Google Scholar

[1]

Carey Caginalp. A survey of results on conservation laws with deterministic and random initial data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2043-2069. doi: 10.3934/dcdsb.2018225

[2]

Florent Berthelin, Paola Goatin. Regularity results for the solutions of a non-local model of traffic flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3197-3213. doi: 10.3934/dcds.2019132

[3]

Felisia Angela Chiarello, Paola Goatin. Non-local multi-class traffic flow models. Networks & Heterogeneous Media, 2019, 14 (2) : 371-387. doi: 10.3934/nhm.2019015

[4]

Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107

[5]

Jan Friedrich, Oliver Kolb, Simone Göttlich. A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks & Heterogeneous Media, 2018, 13 (4) : 531-547. doi: 10.3934/nhm.2018024

[6]

Fengbai Li, Feng Rong. Decay of solutions to fractal parabolic conservation laws with large initial data. Communications on Pure & Applied Analysis, 2013, 12 (2) : 973-984. doi: 10.3934/cpaa.2013.12.973

[7]

Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks & Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028

[8]

Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Random dispersal vs. non-local dispersal. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 551-596. doi: 10.3934/dcds.2010.26.551

[9]

Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475

[10]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[11]

Shixiu Zheng, Zhilei Xu, Huan Yang, Jintao Song, Zhenkuan Pan. Comparisons of different methods for balanced data classification under the discrete non-local total variational framework. Mathematical Foundations of Computing, 2019, 2 (1) : 11-28. doi: 10.3934/mfc.2019002

[12]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[13]

Sebastien Motsch, Mehdi Moussaïd, Elsa G. Guillot, Mathieu Moreau, Julien Pettré, Guy Theraulaz, Cécile Appert-Rolland, Pierre Degond. Modeling crowd dynamics through coarse-grained data analysis. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1271-1290. doi: 10.3934/mbe.2018059

[14]

Tahir Bachar Issa, Rachidi Bolaji Salako. Asymptotic dynamics in a two-species chemotaxis model with non-local terms. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3839-3874. doi: 10.3934/dcdsb.2017193

[15]

Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036

[16]

Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511

[17]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[18]

Alexander Kurganov, Anthony Polizzi. Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Networks & Heterogeneous Media, 2009, 4 (3) : 431-451. doi: 10.3934/nhm.2009.4.431

[19]

Stefano Bianchini. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 329-350. doi: 10.3934/dcds.2000.6.329

[20]

Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling. Networks & Heterogeneous Media, 2013, 8 (2) : 433-463. doi: 10.3934/nhm.2013.8.433

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]