Citation: |
[1] |
R. M. Anderson and R. M. May, Population biology of infectious diseases: Part I, Nature, 280 (1979), 361-367.doi: 10.1038/280361a0. |
[2] |
R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford and New York, 1991. |
[3] |
E. Beretta and D. Breda, An SEIR epidemic model with constant latency time and infectious period, Math. Biosci. Eng., 8 (2011), 931-952.doi: 10.3934/mbe.2011.8.931. |
[4] |
E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144-1165.doi: 10.1137/S0036141000376086. |
[5] |
E. Beretta and Y. Takeuchi, Global stability of an SIR epidemic model with time delays, J. Math. Biol., 33 (1995), 250-260.doi: 10.1007/BF00169563. |
[6] |
G. Birkhoff and G. Rota, Ordinary Differential Equations, John Wiley and Sons, Boston, 1982. |
[7] |
B. Buonomo and M. Cerasuolo, Stability and bifurcation in plant-pathogens interactions, Appl. Math. Comput., 232 (2014), 858-871.doi: 10.1016/j.amc.2014.01.127. |
[8] |
V. Capasso, Mathematical Structures of Epidemic Systems, Springer, Berlin, 1993.doi: 10.1007/978-3-540-70514-7. |
[9] |
C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Engin., 1 (2004), 361-404.doi: 10.3934/mbe.2004.1.361. |
[10] |
N. J. Cunniffe and C. A. Gilligan, nvasion, persistence and control in epidemic models for plant pathogens: The effect of host demography, J. Royal Soc. Interface, 7 (2010), 439-451.doi: 10.1098/rsif.2009.0226. |
[11] |
N. J. Cunniffe and C. A. Gilligan, A theoretical framework for biological control of soil-borne plant pathogens: Identifying effective strategies, J. Theor. Biol., 278 (2011), 32-43.doi: 10.1016/j.jtbi.2011.02.023. |
[12] |
N. J. Cunniffe, R. O. J. H. Stutt, F. van den Bosch and C. A. Gilligan, Time-dependent infectivity and flexible latent and infectious periods in compartmental models of plant disease, Phytopathology, 102 (2012), 365-380.doi: 10.1094/PHYTO-12-10-0338. |
[13] |
J. Dushoff, W. Huang and C. Castillo-Chavez, Backward bifurcations and catastrophe in simple models of fatal diseases, J. Math. Biol., 36 (1998), 227-248.doi: 10.1007/s002850050099. |
[14] |
C. A. Gilligan, An epidemiological framework for disease management, Adv. Bot. Res., 38 (2002), 1-64.doi: 10.1016/S0065-2296(02)38027-3. |
[15] |
C. A. Gilligan, Sustainable agriculture and plant diseases: An epidemiological perspective, Philos. T. Roy. Soc. B, 363 (2008), 741-759.doi: 10.1098/rstb.2007.2181. |
[16] |
C. A. Gilligan and F. van den Bosch, Epidemiological models for invasion and persistence of pathogens, Annu. Rev. Phytopathol., 46 (2008), 385-418.doi: 10.1146/annurev.phyto.45.062806.094357. |
[17] |
S. Gubbins, C. A. Gilligan and A. Kleczkowski., Population dynamics of plant-parasite interactions: thresholds for invasion. Theor. Pop. Biol., 57 (2000), 219-233.doi: 10.1006/tpbi.1999.1441. |
[18] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, Berlin, 1983.doi: 10.1007/978-1-4612-1140-2. |
[19] |
J. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20 (1989), 388-395.doi: 10.1137/0520025. |
[20] |
G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence, J. Math. Biol., 63 (2011), 125-139.doi: 10.1007/s00285-010-0368-2. |
[21] |
M. J. Jeger, Asymptotic behaviour and threshold criteria in model plant disease epidemics, Plant Pathol., 35 (1986), 355-361.doi: 10.1111/j.1365-3059.1986.tb02026.x. |
[22] |
M. J. Jeger, J. Holt, F. Van Den Bosch and L. V. Madden, Epidemiology of insect-transmitted plant viruses: Modelling disease dynamics and control interventions, Physiol. Entomol., 29 (2004), 291-304.doi: 10.1111/j.0307-6962.2004.00394.x. |
[23] |
M. J. Jeger, P. Jeffries, Y. Elad and X-M Xu, A generic theoretical model for biological control of foliar plant diseases, J. Theor. Biol., 256 (2009), 201-214.doi: 10.1016/j.jtbi.2008.09.036. |
[24] |
M. J. Jeger and F. van den Bosch, Threshold criteria for model plant disease epidemics. I. asymptotic results, Phytopathology, 84 (1994), 24-27.doi: 10.1094/Phyto-84-24. |
[25] |
M. J. Jeger, F. van den Bosch and L. V. Madden, Modelling virus-and host-limitation in vectored plant disease epidemics, Virus Res., 159 (2011), 215-222.doi: 10.1016/j.virusres.2011.05.012. |
[26] |
M. J. Jeger, F. Van Den Bosch, L. V. Madden and J. Holt, A model for analysing plant-virus transmission characteristics and epidemic development, Math. Med. Biol., 15 (1998), 1-18.doi: 10.1093/imammb15.1.1. |
[27] |
Z. Jin and Z. Ma, The stability of an SIR epidemic model with time delays, Math. Biosci. Eng., 3 (2006), 101-109. |
[28] |
Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics, Academic Press, 1993. |
[29] |
M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160 (1999), 191-213.doi: 10.1016/S0025-5564(99)00030-9. |
[30] |
W. M. Liu, Criterion of Hopf bifurcations without using eigenvalues, J. Math. Anal. Appl., 182 (1994), 250-256.doi: 10.1006/jmaa.1994.1079. |
[31] |
W. Ma, M. Song and Y. Takeuchi, Global stability of an SIR epidemic model with time delay, Appl. Math. Lett., 17 (2004), 1141-1145.doi: 10.1016/j.aml.2003.11.005. |
[32] |
W. Ma, Y. Takeuchi, T. Hara and E. Beretta, Permanence of an SIR epidemic model with distributed time delays, Tohoku Math. J., 54 (2002), 581-591.doi: 10.2748/tmj/1113247650. |
[33] |
L. V. Madden, Botanical epidemiology: Some key advances and its continuing role in disease management, Eur. J. Plant Path., 115 (2006), 3-23.doi: 10.1007/s10658-005-1229-5. |
[34] |
L. V. Madden, G. Hughes and F. Van den Bosch, The Study of Plant Disease Epidemics, American Phytopathological Society, St Paul, MN, 2007. |
[35] |
R. M. May and R. M. Anderson, Population biology of infectious diseases: Part II, Nature, 280 (1979), 455-461.doi: 10.1038/280455a0. |
[36] |
C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete, Nonlinear Anal. RWA, 11 (2010), 55-59.doi: 10.1016/j.nonrwa.2008.10.014. |
[37] |
M. T. McGrath, N. Shishkoff, C. Bornt and D. D. Moyer, First occurrence of powdery mildew caused by Leveillula taurica on pepper in New York, Plant Disease, 85 (2001), 1122-1122. |
[38] |
H. L. Smith, L. Wang and M. Y. Li, Global dynamics of an SEIR epidemic model with vertical transmission, SIAM J. Appl. Math., 62 (2001), 58-69.doi: 10.1137/S0036139999359860. |
[39] |
R. N. Strange, Introduction to Plant Pathology, John Wiley & Sons, 2006. |
[40] |
Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal., 42 (2000), 931-947.doi: 10.1016/S0362-546X(99)00138-8. |
[41] |
J. M. Tchuenche and C. Chiyaka, Global dynamics of a time delayed SIR model with varying population size, Dynamical Systems, 27 (2012), 145-160.doi: 10.1080/14689367.2011.607798. |
[42] |
J. M. Tchuenche, A. Nwagwo and R. Levins, Global behaviour of an SIR epidemic model with time delay, Math. Methods Appl. Sci., 30 (2007), 733-749.doi: 10.1002/mma.810. |
[43] |
F. Van Den Bosch, G. Akudibilah, S. Seal and M. Jeger, Host resistance and the evolutionary response of plant viruses, J. Appl. Ecol., 43 (2006), 506-516. |
[44] |
F. Van den Bosch, M. J. Jeger and C. A. Gilligan, Disease control and its selection for damaging plant virus strains in vegetatively propagated staple food crops; a theoretical assessment, Proc. Royal Soc. Lond. B Biol., 274 (2007), 11-18. |
[45] |
F. Van den Bosch, N. McRoberts, F. van den Bergh and L. V. Madden, The basic reproduction number of plant pathogens: Matrix approaches to complex dynamics, Phytopathology, 98 (2008), 239-249 |
[46] |
P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6. |
[47] |
J. E. Van der Plank, Plant Diseases: Epidemics and Control, Academic Press, 1963. |
[48] |
R. Xu and Y. Du, A delayed SIR epidemic model with saturation incidence and a constant infectious period, J. Appl. Math. Comput., 35 (2011), 229-250.doi: 10.1007/s12190-009-0353-3. |
[49] |
R. Xu and Z. Ma, Global stability of a delayed SEIRS epidemic model with saturation incidence rate, Nonlinear Dynam., 61 (2010), 229-239.doi: 10.1007/s11071-009-9644-3. |
[50] |
J. C. Zadoks, Systems analysis and the dynamics of epidemics, Phytopathology, 61 (1971), 600-610. |
[51] |
H. Zhang, L. Chen and J. J. Nieto, A delayed epidemic model with stage-structure and pulses for pest management strategy, Nonlinear Anal. RWA, 9 (2008), 1714-1726.doi: 10.1016/j.nonrwa.2007.05.004. |
[52] |
J. Z. Zhang, Z. Jin, Q. X. Liu and Z. Y. Zhang, Analysis of a delayed SIR model with nonlinear incidence rate, Discrete Dyn. Nat. Soc., 2008 (2008), 16pp.doi: 10.1155/2008/636153. |