2015, 12(4): v-xvi. doi: 10.3934/mbe.2015.12.4v

The work of Glenn F. Webb

1. 

College of Technology, University of Houston, Houston, Texas 77006-4021, United States

Published  April 2015

It is my distinct pleasure to introduce this volume honoring the 70th birthday of Professor Glenn F. Webb. The existence of this compiled volume is in itself a testimony of Glenn's dedication to, his pursuit of, and his achievement of scientific excellence. As we honor Glenn, we honor what is excellent in our profession. Aristotle clearly articulated his concept of excellence. ``We are what we repeatedly do. Excellence, then, is not an act, but a habit." As we look over the course of his career we observe ample evidence of Glenn Webb's habitual practice of excellence. Beginning with Glenn's first paper [1], one observes a constant stream of productivity and high impact work. Glenn has authored or co-authored over 160 papers, written one research monograph, and co-edited six volumes. He has delivered plenary lectures, colloquia, and seminars across the globe, and he serves on the editorial boards of 11 archival journals. He is a Fellow of the American Mathematical Society. Glenn's scientific career chronicles an evolution of scientific work that began with his interest in nonlinear semigroup theory and leads up to his current activity in biomedical mathematics. At each stage we see seminal contributions in the areas of nonlinear semigroups, functional differential equations, infinite dimensional dynamical systems, mathematical population dynamics, mathematical biology and biomedical mathematics. Glenn's work is distinguished by a clarity and accessibility of exposition, a precise identification and description of the problem or model under consideration, and thorough referencing. He uses elementary methods whenever possible but couples this with an ability to employ power abstract methods when necessitated by the problem.

For more information please click the “Full Text” above.
Citation: William E. Fitzgibbon. The work of Glenn F. Webb. Mathematical Biosciences & Engineering, 2015, 12 (4) : v-xvi. doi: 10.3934/mbe.2015.12.4v
References:
[1]

, Representation of nonlinear nonexpansive semi-groups of transformations in Banach spaces,, J. Math. Mech., 19 (1969), 159. Google Scholar

[2]

, Nonlinear evolution equations and product integration in Banach spaces,, Trans. Amer. Math. Soc., 148 (1970), 273. Google Scholar

[3]

, Product integral representation of time dependent nonlinear evolution equations in Banach spaces,, Pacific J. Math., 32 (1970), 269. doi: 10.2140/pjm.1970.32.269. Google Scholar

[4]

, Nonlinear evolution equations and product stable operator on Banach spaces,, Trans. Amer. Math. Soc., 155 (1971), 409. doi: 10.1090/S0002-9947-1971-0276842-9. Google Scholar

[5]

, Continuous nonlinear perturbations of linear accretive operators in Banach spaces,, J. Functional Analysis, 10 (1972), 191. doi: 10.1016/0022-1236(72)90048-1. Google Scholar

[6]

, Dual spaces of spaces of quasi-continuous functions,, Mathematische Nachrichten, 55 (1973), 309. doi: 10.1002/mana.19730550118. Google Scholar

[7]

, Nonlinear perturbation of linear accretive operators in Banach spaces,, Israel J. Math., 12 (1972), 237. doi: 10.1007/BF02790750. Google Scholar

[8]

, Accretive operators and existence for nonlinear functional differential equations,, J. Differential Equations, 14 (1973), 57. doi: 10.1016/0022-0396(73)90076-4. Google Scholar

[9]

, Autonomous nonlinear functional differential equations and nonlinear semigroups,, J. Math. Anal. Appl., 46 (1974), 1. doi: 10.1016/0022-247X(74)90277-7. Google Scholar

[10]

, Abstract scattering for nonlinear evolution equations,, Math. Systems Theory, 8 (1974), 347. doi: 10.1007/BF01780581. Google Scholar

[11]

, An application of accretive operator theory to a nonlinear complex heat equation,, Bollettino dell Unione Mathematica ltaliana, 11 (1975), 604. Google Scholar

[12]

(with H. Riedl), Relative boundedness conditions and the perturbation of nonlinear operators,, Czechoslovak Math. J., 24 (1974), 395. Google Scholar

[13]

(with C. Travis), Existence and stability for partial functional differential equations,, Trans. Amer. Math. Soc., 200 (1974), 395. doi: 10.1090/S0002-9947-1974-0382808-3. Google Scholar

[14]

, Asymptotic stability for abstract nonlinear functional differential equations,, Proc. Amer. Math. Soc., 54 (1976), 225. doi: 10.1090/S0002-9939-1976-0402237-0. Google Scholar

[15]

, Functional differential equations and nonlinear semigroups in Lp spaces,, J. Differential Equations, 20 (1976), 71. doi: 10.1016/0022-0396(76)90097-8. Google Scholar

[16]

(with C. Travis), Partial differential equations with deviating arguments in the time variable,, J. Math. Anal. Appl., 56 (1976), 397. doi: 10.1016/0022-247X(76)90052-4. Google Scholar

[17]

, Linear functional differential equations with L2 initial functions,, Funkcialaj Ekvacioj., 19 (1976), 65. Google Scholar

[18]

(with G. Reddien), Bound, ary value problems for functional differential equations with L2 initial functions,, Trans. Amer. Math. Soc., 223 (1976), 305. Google Scholar

[19]

(with C. Travis), Existence and stability for partial functional differential equations,, in Dynamical Systems, 2 (1976), 147. Google Scholar

[20]

, Regularity of solutions to an abstract inhomogeneous linear differential equations,, Proc. Amer. Math. Soc., 62 (1977), 272. doi: 10.1090/S0002-9939-1977-0432996-3. Google Scholar

[21]

, Exponential representation of solutions to an abstract semi-linear differential equations,, Pacific J. Math., 70 (1977), 269. doi: 10.2140/pjm.1977.70.269. Google Scholar

[22]

, Asymptotic stability in the a-norm for an abstract nonlinear Volterra integral equation,, in Stability of Dynamical Systems, 28 (1977), 207. Google Scholar

[23]

, Volterra integral equations and nonlinear semigroups,, Nonl. Anal. Theory Math. Appl., 1 (1977), 415. Google Scholar

[24]

, Volterra integral equations as functional differential equations on infinite intervals,, Hiroshima Math. J., 7 (1977), 61. Google Scholar

[25]

(with C. Travis), Compactness, regularity, and uniform continuity properties of strongly continuous cosine families,, Houston J. Math., 3 (1977), 555. Google Scholar

[26]

(with C. Travis), Existence, stability, and compactness in the a-norm for partial functional differential equations,, Trans. Amer. Math. Soc., 240 (1978), 129. Google Scholar

[27]

(with C. Travis), Cosine families and abstract nonlinear second order differential equations,, Acta Math., 32 (1978), 75. doi: 10.1007/BF01902205. Google Scholar

[28]

, An abstract semilinear Volterra intergrodifferential equation,, Proc. Amer. Math. Soc., 69 (1978), 255. doi: 10.1090/S0002-9939-1978-0467214-4. Google Scholar

[29]

(with G. Reddien), Numerical approximation of nonlinear functional differential equations with L2 initial functions,, SIAM J. Math Anal., 9 (1978), 1151. doi: 10.1137/0509093. Google Scholar

[30]

(with C. Travis), An abstract second order semilinear Volterra intergrodifferential equation,, SIAM J. Math. Anal., 10 (1979), 412. doi: 10.1137/0510038. Google Scholar

[31]

(with C. Travis), Perturbations of strongly continuous cosine family generators,, Colloquium Mathematicum, 45 (1981), 277. Google Scholar

[32]

, A bifurcation problem for a nonlinear hyperbolic partial differential equation,, SIAM J. Math. Anal., 10 (1979), 922. doi: 10.1137/0510086. Google Scholar

[33]

(with C. Travis), Second order differential equations in Abstract Spaces,, in Proceedings of the Symposium on Nonlinear Equations in Abstract Spaces, (1978), 331. Google Scholar

[34]

, Abstract Volterra integrodifferential equations and a class of reaction-diffusion equations,, in Voleterra Equations (Proceedings of Helsinki Symposium on Integral Equations, 737 (1979), 295. Google Scholar

[35]

, A representation formula for strongly continuous cosine families,, Aequationes Mathematicae, 21 (1980), 251. doi: 10.1007/BF02189359. Google Scholar

[36]

, Existence and asymptotic behavior for a strongly damped nonlinear wave equation,, Can. J. Math., 32 (1980), 631. doi: 10.4153/CJM-1980-049-5. Google Scholar

[37]

, Compactness of bounded trajectories of dynamical systems in infinite dimensional spaces,, Proc. Royal Soc. Edinburgh, 84 (1979), 19. doi: 10.1017/S0308210500016930. Google Scholar

[38]

, A reaction-diffusion model for a deterministic diffusive epidemic,, J. Math. Anal. Appl., 84 (1981), 150. doi: 10.1016/0022-247X(81)90156-6. Google Scholar

[39]

, A deterministic diffusive epidemic model with an incubation period,, in Proceedings of the Functional Differential Equations and Integral Equations Conference, (1981), 18. Google Scholar

[40]

(with M. Badii), Nonlinear nonautonomous functional differential equations in Lp spaces,, Nonlinear Anal., 5 (1981), 203. doi: 10.1016/0362-546X(81)90045-6. Google Scholar

[41]

(with M. Badii), representation of solutions of functional differential equations with time-dependent delays,, Houston J. Math., 6 (1981), 544. Google Scholar

[42]

, An age-dependent epidemic model with spatial diffusion,, Arch. Rat. Mech. Anal., 75 (1980), 91. doi: 10.1007/BF00284623. Google Scholar

[43]

, A recovery-relapse epidemic model with spatial diffusion,, J. Math. Biol., 14 (1982), 177. doi: 10.1007/BF01832843. Google Scholar

[44]

, Nonlinear semigroups and age-dependent population models,, Annali di Mathematica Pura ed Applicata, 129 (1981), 43. doi: 10.1007/BF01762135. Google Scholar

[45]

, A genetics model with age-dependence and spatial diffusion,, in Proceedings of the Conference on Differential Equations and Applications to Ecology, (1981), 29. Google Scholar

[46]

, Diffusive age-dependent population models and an application to genetics,, Math. Biosci., 61 (1982), 1. doi: 10.1016/0025-5564(82)90092-X. Google Scholar

[47]

, Nonlinear age-dependent population dynamics with continuous age distributions,, in Proceedings of the Conference on Differential Equations and Applications (Schloss Retzhof, 68 (1982), 274. Google Scholar

[48]

, Nonlinear age-dependent population dynamics in L1,, J. Integral Equations, 5 (1983), 309. Google Scholar

[49]

, The semigroup associated with nonlinear age-dependent population dynamics,, Internat. J. Comput. Math. Appl., 9 (1983), 487. doi: 10.1016/0898-1221(83)90062-7. Google Scholar

[50]

(with R.Villella-Bressan), Nonautonomous functional equations and nonlinear evolution operators,, Rend. Sem. Mat. Univ. Padova, 71 (1984), 177. Google Scholar

[51]

(with K. Kunisch and W. Schappacher), Nonlinear age-dependent population dynamics with random diffusion - Hyperbolic partial differential equations, II., Comput. Math. Appl., 11 (1985), 155. doi: 10.1016/0898-1221(85)90144-0. Google Scholar

[52]

, A semigroup proof of the Sharpe-Lotka Theorem,, in Infinite-Dimensional Systems (Proceedings, 1076 (1984), 254. doi: 10.1007/BFb0072780. Google Scholar

[53]

, Dynamics of populations structured by internal variables,, Mathematische Zeitschrift, 189 (1985), 319. doi: 10.1007/BF01164156. Google Scholar

[54]

, Logistic models of structured population growth,, Internat. J. Comput. Math. Appl. I, 2A (1986), 527. Google Scholar

[55]

(with E. Sinestrari), Nonlinear hyperbolic systems with nonlocal boundary conditions,, J. Math. Anal. Appl., 121 (1987), 449. doi: 10.1016/0022-247X(87)90255-1. Google Scholar

[56]

, A model of proliferating cell populations with inherited cycle length,, J. Math. Biol., 23 (1986), 269. doi: 10.1007/BF00276962. Google Scholar

[57]

, An operator-theoretic formulation of asynchronous exponential growth,, Trans. Amer. Math. Soc., 303 (1987), 751. doi: 10.1090/S0002-9947-1987-0902796-7. Google Scholar

[58]

(with A. Grabosch), Asynchronous exponential growth in transition probability models of the cell cycle,, SIAM J. Math. Anal., 18 (1987), 897. doi: 10.1137/0518068. Google Scholar

[59]

, Dynamics of structured populations with inherited properties,, Internat. J. Comput. Math. Appl., 13 (1987), 749. doi: 10.1016/0898-1221(87)90160-X. Google Scholar

[60]

(with M. Gyllenberg), Age-size structure in populations with quiescence,, Math. Biosci., 86 (1987), 67. doi: 10.1016/0025-5564(87)90064-2. Google Scholar

[61]

, Random transitions, size control, and inheritance in cell population dynamics,, Math. Biosci., 85 (1987), 71. doi: 10.1016/0025-5564(87)90100-3. Google Scholar

[62]

(with C. Chyan), A probabilistic model of proliferating cell populations with correlation of mother-daughter mitotic times,, Ann. Mat. Pura. Appl., 158 (1991), 1. doi: 10.1007/BF01759296. Google Scholar

[63]

(with D. Hardin and P. Takac), A comparison of dispersal strategies for survival of spatially heterogeneous populations,, SIAM J. Appl. Math., 48 (1988), 1396. doi: 10.1137/0148086. Google Scholar

[64]

, Alpha and beta curves, sister-sister and mother-daughter correlations in cell population dynamics,, Internat. J. Comput. Math. Appl., 18 (1989), 973. doi: 10.1016/0898-1221(89)90016-3. Google Scholar

[65]

(with D. Hardin and P Takac), Asymptotic properties of a continuous-space discrete-time populations model in a random environment,, J. Math. Biol., 26 (1988), 361. doi: 10.1007/BF00276367. Google Scholar

[66]

(with D. Hardin and P. Takac), Dispersion population models discrete in time and continuous in space,, J. Math. Biol., 28 (1990), 1. doi: 10.1007/BF00171515. Google Scholar

[67]

, Resonance phenomena in cell population chemotherapy models,, Rocky Mountain J. Math., 20 (1990), 1195. doi: 10.1216/rmjm/1181073070. Google Scholar

[68]

, Semigroup methods in populations dynamics: Proliferating cell populations,, in Semigroup Theory and Applications, 116 (1989), 441. Google Scholar

[69]

(with M. Gyllenberg), Quiescence as an explanation of Gompertzian tumor growth,, Growth, 53 (1989), 25. Google Scholar

[70]

(With M. Gyllenberg), A nonlinear structured population model of tumor growth with quiescence,, J. Math. Biol., 28 (1990), 671. doi: 10.1007/BF00160231. Google Scholar

[71]

(with M. Gyllenberg), Quiescence in structured population dynamics: Applications to tumor growth,, in Mathematical population dynamics (Proceedings of the 2nd International Conference on Mathematical Population Dynamics, 131 (1991), 45. Google Scholar

[72]

(with M. Gyllenberg), Asynchronous exponential growth of semigroups of nonlinear operators,, J. Math. Anal. Appl., 167 (1992), 443. doi: 10.1016/0022-247X(92)90218-3. Google Scholar

[73]

, A cell population model of periodic chemotherapy treatment,, in Biomedical Modeling and Simulation, (1992), 83. Google Scholar

[74]

, Asynchronous exponential growth in differential equations with homogeneous nonlinearities,, in Differential Equations in Banach Spaces, 148 (1993), 225. Google Scholar

[75]

, A nonlinear cell population model of periodic chemotherapy treatment,, in Recent Trends in Ordinary Differential Equations, 1 (1992), 569. Google Scholar

[76]

, Convexity of the growth bound of C0-semigroups of operators,, in Semigroups of Linear and Nonlinear Operators and Applications, (1993), 259. Google Scholar

[77]

, Asynchronous exponential growth in differential equations with asymptotically homogeneous nonlinearities,, Adv. Math. Sci. Appl., 3 (): 43. Google Scholar

[78]

, Resonances in periodic chemotherapy scheduling,, in Proceedings of the First World Congress of Nonlinear Analysts, (1996), 3463. Google Scholar

[79]

, Growth bounds of solutions of abstract nonlinear differential equations,, Diff. Int. Eqs., 7 (1994), 1145. Google Scholar

[80]

(with W. E. Fitzgibbon and M. E. Parrott), Diffusion epidemic models with incubation and crisscross dynamics,, Math. Biosci., 128 (1995), 131. doi: 10.1016/0025-5564(94)00070-G. Google Scholar

[81]

(with W. E. Fitzgibbon and M. E. Parrott), Diffusive epidemic models with spatial and age dependence,, Discrete Contin. Dynam. Syst., 1 (1995), 35. Google Scholar

[82]

, Periodic and chaotic behavior in structured models of cell population dynamics,, in Recent Developments in Evolution Equations, 324 (1995), 40. Google Scholar

[83]

(with Denise Kirschner), A model for treatment strategy in the chemotherapy of AIDS,, Bull. Math. Biol., 58 (1996), 367. doi: 10.1016/0092-8240(95)00345-2. Google Scholar

[84]

(with M. Johnson), Resonances in age structured cell population models of periodic chemotherapy,, Internat. J. Appl. Sci. Comp., 3 (1996), 57. Google Scholar

[85]

(with W. E. Fitzgibbon and M. E. Parrott), A diffusive epidemic model for a host-vector system,, in Differential Equations and Applications to Biology and to Industry, (1996), 401. Google Scholar

[86]

(with W. Desch and W. Schappacher), Hypercyclic and chaotic semigroups of linear operators,, Ergodic Theory Dynam. Syst., 17 (1997), 793. doi: 10.1017/S0143385797084976. Google Scholar

[87]

(with W. E. Fitzgibbon, M. Langlais and M. E. Parrott), A diffusive system with age dependence modeling FIV,, Nonlinear Anal. Theory Meth. Appl., 25 (1995), 975. doi: 10.1016/0362-546X(95)00092-A. Google Scholar

[88]

(with 0. Arino and M. Kimmel), Mathematical modelling of the loss of telomere sequences,, J. Theoret. Biol., 177 (1995), 45. doi: 10.1006/jtbi.1995.0223. Google Scholar

[89]

(with J. Dyson and R. Villella-Bressan), A singular transport equation modelling a proliferating maturity structured cell population,, Canadian Appl. Math. Quart., 4 (1996), 65. Google Scholar

[90]

(with 0. Arino and E. Sanch.ez), Polynomial growth of telomere loss in a heterogenous cell population,, Dynam. Contin. Discrete Impulsive Syst., 3 (1997), 263. Google Scholar

[91]

(with W. E. Fitzgibbon and M. E. Parrott), A diffusive age-structured SEIRS epidemic model,, Meth. Appl. Anal., 3 (1996), 358. Google Scholar

[92]

(with W. E. Fitzgibbon, J. Morgan and M. E. Parrott), Drug resistance in diffusive epidemic population models,, in Advances in Mathematical Population Dynamics - Molecules, 6 (1998), 613. Google Scholar

[93]

(with J. Dyson and R. Villella-Bressan), Hypercyclicity of a transport equation with delays,, Nonlinear Anal. Theory Meth. Appl., 29 (1997), 1343. doi: 10.1016/S0362-546X(96)00192-7. Google Scholar

[94]

(with Denise Kirschner), Understanding drug resistance for monotherapy treatment of HIV infection,, Bull. Math. Biol., 59 (1997), 763. doi: 10.1016/S0092-8240(97)00038-4. Google Scholar

[95]

(with Denise Kirschner), A mathematical model of combined drug therapy of HIV infection,, J. Theoret. Med., 1 (1997), 25. doi: 10.1080/10273669708833004. Google Scholar

[96]

(with W. E. Fitzgibbon, J. Morgan and M. E. Parrott), An age dependent regularization of Martin's problem,, in Reaction Diffusion Systems, 194 (1998), 131. Google Scholar

[97]

(with Denise Kirschner), Qualitative differences in HIV chemotherapy between resistance and remission outcomes,, Emerg. Infect. Dis., 3 (1997), 273. Google Scholar

[98]

(with 0. Arino and E. Sanchez), Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence,, J. Math. Anal. Appl., 215 (1997), 499. doi: 10.1006/jmaa.1997.5654. Google Scholar

[99]

(with Denise Kirschner), \doititle{Immunotherapy of HIV infection},, J. Biol. Systems, 6 (1998), 71. doi: 10.1142/S0218339098000091. Google Scholar

[100]

(with J. Dyson and R. Villella-Bressan), An age and maturity structured model of cell population dynamics,, in Mathematical Models in Medical and Health Science (Proceedings of the Conference on Mathematical Models in Medical and Health Sciences), (1999), 99. Google Scholar

[101]

(with Li Zhou, Yiping Fu, Mengxing He and Kaitai Song), Solutions of a class of first order partial differential equations with delay,, in Proceedings of the Conference on Nonlinear Partial Differential Equations and Applications (Chongquing University, (1998), 26. Google Scholar

[102]

(with Miles Cloyd and Denise Kirschner), A model of HIV- I disease progression based on virus-induced lymph node homing and homing-induced apoptosis of CD4+ lymphocytes,, J. AIDS, 24 (2000), 352. Google Scholar

[103]

(with J. Dyson and R. Villella-Bressan), A Nonlinear age and maturity structured model of population dynamics. I. Basic Theory,, J. Math. Anal. Appl., 242 (2000), 93. doi: 10.1006/jmaa.1999.6656. Google Scholar

[104]

(with J. Dyson and R. Villella-Bressan), A Nonlinear age and maturity structured model of population dynamics. II. Chaos,, J. Math. Anal. Appl., 242 (2000), 255. doi: 10.1006/jmaa.1999.6657. Google Scholar

[105]

(with P. Magat), Mutation, selection, and recombination in a model of phenotype evolution,, Discrete Contin. Dynam. Syst., 6 (2000), 221. Google Scholar

[106]

(with J. Dyson and R. Villella-Bressan), A maturity structured model of a population of proliferating and quiescent cells,, Archives of Control Sciences, 9 (1999), 201. Google Scholar

[107]

(with M. Blaser), Dynamics of bacterial phenotype selection in a colonized host,, Proc. Natl. Acad. Sci., 99 (2002), 3135. doi: 10.1073/pnas.042685799. Google Scholar

[108]

(with J. Dyson and R. Villella-Bressan), Asynchronous exponential growth in an age structured population of proliferating and quiescent cells,, Math. Biosci., 177-178 (2002), 177. doi: 10.1016/S0025-5564(01)00097-9. Google Scholar

[109]

, The prime number periodical cicada problem,, Discrete Contin. Dynam. Syst. Ser. B, 1 (2001), 387. doi: 10.3934/dcdsb.2001.1.387. Google Scholar

[110]

(with Seema Bajaria, Miles Cloyd and Denise Kirschner), Dynamics of nave and memory CD4+ T lymphocytes in HIV-I disease progression,, J. AIDS, 30 (2002), 41. Google Scholar

[111]

(with E. D'Agata and M. A. Horn), The impact of persistent gastrointestinal colonization on the transmission dynamics of vancomycin-resistant enterococci,, J. Infect. Dis., 185 (2002), 766. Google Scholar

[112]

, The steady state of a tumor cord cell population,, J. Evol. Eqs., 2 (2002), 425. doi: 10.1007/PL00012598. Google Scholar

[113]

(with M. Blaser), Mailborne transmission of anthrax: Modeling and implications,, Proc. Natl. Acad. Sci., 99 (2002), 7027. Google Scholar

[114]

(with R. Cutshaw and S.Ruan), A mathematical model of cell-to-cell spread of HIV that includes a time delay,, J. Math. Biol., 46 (2003), 425. doi: 10.1007/s00285-002-0191-5. Google Scholar

[115]

, The silent bomb: The risk of anthrax as a weapon of mass destruction,, Proc. Nat. Acad. Sci., 100 (2003), 4355. Google Scholar

[116]

(with J. Dyson and R. Villella-Bressan), A semilinear transport equation with delays,, Int. J. Math. Math. Sci., 2003 (2003), 2011. doi: 10.1155/S0161171203211431. Google Scholar

[117]

(with J. Dyson and R. Villella-Bressan), The steady state of a maturity structured tumor cord cell population,, Discrete Contin. Dynam. Syst. Ser. B, 4 (2004), 115. Google Scholar

[118]

, Structured population dynamics,, Banach Center Publications, 63 (2004), 123. Google Scholar

[119]

(with Seema Bajaria and Denise Kirschner), Predicting differential responses to structured treatment interruptions during HAART,, Bull. Math. Biol., 66 (2004), 1093. doi: 10.1016/j.bulm.2003.11.003. Google Scholar

[120]

(with M. Blaser, H. Zhu, S. Ardal and J. Wu), Critical role of nosocomial transmission in the Toronto SARS, outbreak,, Math. Biosci. Eng., 1 (2004), 1. doi: 10.3934/mbe.2004.1.1. Google Scholar

[121]

(with J. Dyson and R. Villella-Bressan), The evolution of a tumor cord cell population,, Comm. Pure Appl. Anal., 3 (2004), 331. doi: 10.3934/cpaa.2004.3.331. Google Scholar

[122]

(with E. D'Agata and M. A. Horn), A mathematical model quantifying the impact of antibiotic exposure, surveillance cultures and other interventions on the prevalence of vancomycin-resistant enterococci,, J. Infect. Dis., 192 (2005), 2004. Google Scholar

[123]

(with M. Greer and L. Pujo-Menjouet), A mathematical analysis of the dynamics of prion proliferation,, J. Theoret. Biol., 242 (2006), 598. doi: 10.1016/j.jtbi.2006.04.010. Google Scholar

[124]

, Being prepared: Modeling the response to an anthrax attack,, Ann. Int. Med., 142 (2005), 667. Google Scholar

[125]

(with E.M.C. D'Agata, P. Magal, and S. Ruan), A model of antibiotic resistant bacterial epidemics in hospitals,, Proc. Nat. Acad. Sci., 102 (2005), 13343. Google Scholar

[126]

(with E. M. C., D'Agata, P. Magal and S. Ruan), Asymptotic behavior in nonsocomial epidemic models with antibiotic resistance,, Diff. Int. Eqs., 19 (2006), 573. Google Scholar

[127]

(with B. Ayati and A. R. A. Anderson), Computational methods and results for structured multiscale models of tumor invasion,, SIAM Multiscale Modeling and Simulation, 5 (2006), 1. doi: 10.1137/050629215. Google Scholar

[128]

(with J. Pruss, L. Pujo-Menjouet and R. Zacher), Analysis of a model for the dynamics of prions,, Discrete Contin. Dynam. Syst. Ser. B, 6 (2006), 215. Google Scholar

[129]

(with H. Engler and J. Pruss), Analysis of a model for the dynamics of prions II,, J. Math. Anal. Appl., 324 (2006), 98. doi: 10.1016/j.jmaa.2005.11.021. Google Scholar

[130]

(with C. Walker), Global existence of classical solutions for a haptotaxis model,, SIAM J. Math. Anal., 38 (2007), 1694. doi: 10.1137/060655122. Google Scholar

[131]

(with J. Dyson and R. Villella-Bressan), Asymptotic behavior of solutions to abstract logistic equations,, Math. Biosci., 206 (2007), 216. doi: 10.1016/j.mbs.2005.08.005. Google Scholar

[132]

(with J. Dyson, R. Villella-Bressan and E. Sanchez), Stabilization of telomeres in nonlinear models of proliferating cell lines,, J. Theoret. Biol., 244 (2007), 400. doi: 10.1016/j.jtbi.2006.08.023. Google Scholar

[133]

, Population models structured by age, size and spatial position,, in Structured Population Models in Biology and Epidemiology, 1936 (2008), 1. doi: 10.1007/978-3-540-78273-5_1. Google Scholar

[134]

(with E. D'Agata and M. A. Horn), Quantifying the impact of bacterial fitness and repeated antimicrobial exposure on the emergence of multidrug-resistant gram-negative bacilli,, Math. Mod. Nat. Phenom., 2 (2007), 129. doi: 10.1051/mmnp:2008014. Google Scholar

[135]

(with M. Greer, P. van den Driessche and L. Wang), Effects of general incidence and polymer joining on nucleated polymerization in a prion disease model,, SIAM J. Appl. Math., 68 (2007), 154. doi: 10.1137/06066076X. Google Scholar

[136]

(with E. D'Agata, P. Magal, D. Olivier and S. Ruan), Modeling antibiotic resistance in hospitals: The impact of minimizing treatment duration,, J. Theoret. Biol., 249 (2007), 487. doi: 10.1016/j.jtbi.2007.08.011. Google Scholar

[137]

(with P. Hinow, S. E. Wang, and C. L. Arteaga), Mathematical model separates quantitatively the cytostatic and cytotoxic effects of a HER2 tyrosine kinase inhibitor,, Theoret. Biol. Med. Mod., 4 (2007). doi: 10.1186/1742-4682-4-14. Google Scholar

[138]

(with J. Dyson, R. Villella-Bressan and E. Sanchez), An age and spatially structured model of tumor invasion with haptotaxis,, Discrete Contin. Dynam. Syst. Ser. B, 8 (2007), 45. doi: 10.3934/dcdsb.2007.8.45. Google Scholar

[139]

(with J. Dyson and R. Villella-Bressan), An age and spatially structured model of tumor invasion with haptotaxis II,, Math. Pop. Studies, 15 (2008), 73. doi: 10.1080/08898480802010159. Google Scholar

[140]

(with J. Dyson and R. Villella-Bressan), A spatial model of tumor growth with cell age, cell size, and mutation of cell phenotypes,, Math. Mod Nat. Phenom., 2 (2007), 69. doi: 10.1051/mmnp:2007004. Google Scholar

[141]

(with W-Y. Tan and W. Ke), A state space model for tumor growth and applications,, Comp. Math. Meth. Med., 10 (2009), 117. Google Scholar

[142]

(with J. Dyson and R. Villella-Bressan), Global existence and boundedness of solutions to a model of chemotaxis,, Math. Mod. Nat. Phen., 3 (2008), 17. doi: 10.1051/mmnp:2008039. Google Scholar

[143]

(S. E. Wang, P. Hinow, N. Bryce, A. M. Weaver, L. Estrada and C. L. Arteaga), A mathematical model quantifies proliferation and motility effects of TGF-$\beta$ on cancer cells,, Comp. Math. Meth. Med., 10 (2009), 71. doi: 10.1080/17486700802171993. Google Scholar

[144]

(with P. Gomez-Mourelo, E. Sanchez and L. Casasus), A fully continuous individual-based model of tumor cell evolution,, Comptes Rendus Biologies, 31 (2008), 823. Google Scholar

[145]

(with E. D'Agata, M. A. Horn, R. Moellering and S. Ruan), Modeling the invasion of community-acquired methicillin-resistant Staphylococcus aureus into the hospital setting,, Clin. Infect. Dis., 48 (2009), 274. Google Scholar

[146]

(with P. Hinow, F. LeFoll and P. Magal), Analysis of a model for transfer phenomena in biological populations,, SIAM J. Appl. Math., 70 (2009), 40. doi: 10.1137/080732420. Google Scholar

[147]

(with E. D'Agata, M. A. Horn, R. Moellering and S. Ruan), Competition of Hospital-Acquired and Community-Acquired Methicillin-Resistant Staphylococcus aureus Strains in Hospitals,, J. Biol. Dyn., 4 (2010), 115. doi: 10.1080/17513750903026411. Google Scholar

[148]

(with C. McCluskey and P. Magal), Liapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109. doi: 10.1080/00036810903208122. Google Scholar

[149]

(with B. Ayati, C. Edwards and J. Wikswo), A mathematical model of bone remodeling dynamics for normal and tumor bone cell populations,, published online, 5 (2010). Google Scholar

[150]

(with M. Blaser, Y-H. Hsieh and J. Wu), Pre-symptomatic influenza transmission, surveillance, and school closings,, Math. Mod. Nat. Phenom., 5 (2010), 191. doi: 10.1051/mmnp/20105312. Google Scholar

[151]

(with E. M. C. D'Agata and J. Pressley), Rapid emergence of co-colonization with community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus strains in the hospital setting,, Math. Mod. Nat. Phenom., 5 (2010), 76. doi: 10.1051/mmnp/20105306. Google Scholar

[152]

(with J. Dyson, S. A. Gourley and R. Villella-Bressan), Existence and asymptotic properties of solutions of a nonlocal evolution equation modelling cell-cell adhesion,, SIAM J. Math. Anal., 42 (2010), 1784. doi: 10.1137/090765663. Google Scholar

[153]

(with E. M. C. D'Agata and J. Pressley), The effect of co-colonization with community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus strains on competitive exclusion,, J. Theoret. Biol., 264 (2010), 645. Google Scholar

[154]

(with J. Pasquier, P. Magal, C. Boulang-Lecomte and F. Le Foll), Consequences of cell-to-cell P-glycoprotein transfer on acquired multidrug resistance in breast cancer: A cell population dynamics model,, Biology Direct, 6 (2011). doi: 10.1186/1745-6150-6-5. Google Scholar

[155]

(with A. Ducrot, F. LeFoll, P. Magal, H. Murakawa and J. Pasquier), An in vitro cell population dynamics model incorporating cell size, quiescence, and contact inhibition,, Math. Mod. Meth. Appl. Sci., 21 (2011), 871. doi: 10.1142/S0218202511005404. Google Scholar

[156]

, Event based interpretation of Schrodinger's equation for the two-slit experiment,, Int. J. Theor. Phys., 50 (2011), 3571. doi: 10.1007/s10773-011-0866-z. Google Scholar

[157]

(with D. T. Grima and E. M. C D'Agata), Mathematical model of the impact of a non-antibiotic treatment for Clostridium difficile on the endemic prevalence of vancomycin-resistant enterococci in a hospital setting,, Comp. Math. Meth. Med., 2012 (2012). doi: 10.1155/2012/605861. Google Scholar

[158]

(with J. Pasquier, L. Galas, C. Boulang-Lecomte, D. Rioult, F. Bultelle, P. Magal and F. Le Foll), Tunneling nanotubes and released microparticles both contribute to extragenetic cell-to-cell p-glycoprotein transfers in mcf-7 breast cancer cells,, J. Biol. Chem., 287 (2012), 7373. Google Scholar

[159]

(with P. Gabriel, S. Garbett, D. Tyson and V. Quaranta), The contribution of age structure to cell population responsesto targeted therapeutics,, J. Theoret. Biol., 311 (2012), 19. doi: 10.1016/j.jtbi.2012.07.001. Google Scholar

[160]

, R0,, Hektoen International Journal, 3 (2011). Google Scholar

[161]

(with E. M. C. D'Agata, M. A. Horn, S. Ruan and J. R. Wares), Efficacy of infection control interventions in reducing the spread of multidrug-resistant organisms in the hospital setting,, PLoS ONE, 7 (2012). doi: 10.1371/journal.pone.0030170. Google Scholar

[162]

(with J. Dyson and S.A. Gourley), A nonlocal evolution equation model of cell-cell adhesion in higher dimensional space,, J. Biol. Dyn., 7 (2013), 68. doi: 10.1080/17513758.2012.755572. Google Scholar

[163]

(with M. Helal, E. Hingant, L. Pujo-Menjouet), Alzheimer's disease: Analysis of a mathematical model incorporating the role of prions,, J. Math. Biol., 69 (2014), 1207. doi: 10.1007/s00285-013-0732-0. Google Scholar

[164]

(with J. Dyson), A cell population model structured by cell age incorporating cell-cell adhesion,, in Mathematical Oncology 2013 (Eds. A. d'Onofrio and A. Gandolfi), (2014), 109. doi: 10.1007/978-1-4939-0458-7_4. Google Scholar

[165]

(with M. J. Blaser), Host demise as a beneficial function of indigenous microbiota in human hosts,, mBio, 5 (2014), 02262. doi: 10.1128/mBio.02262-14. Google Scholar

show all references

References:
[1]

, Representation of nonlinear nonexpansive semi-groups of transformations in Banach spaces,, J. Math. Mech., 19 (1969), 159. Google Scholar

[2]

, Nonlinear evolution equations and product integration in Banach spaces,, Trans. Amer. Math. Soc., 148 (1970), 273. Google Scholar

[3]

, Product integral representation of time dependent nonlinear evolution equations in Banach spaces,, Pacific J. Math., 32 (1970), 269. doi: 10.2140/pjm.1970.32.269. Google Scholar

[4]

, Nonlinear evolution equations and product stable operator on Banach spaces,, Trans. Amer. Math. Soc., 155 (1971), 409. doi: 10.1090/S0002-9947-1971-0276842-9. Google Scholar

[5]

, Continuous nonlinear perturbations of linear accretive operators in Banach spaces,, J. Functional Analysis, 10 (1972), 191. doi: 10.1016/0022-1236(72)90048-1. Google Scholar

[6]

, Dual spaces of spaces of quasi-continuous functions,, Mathematische Nachrichten, 55 (1973), 309. doi: 10.1002/mana.19730550118. Google Scholar

[7]

, Nonlinear perturbation of linear accretive operators in Banach spaces,, Israel J. Math., 12 (1972), 237. doi: 10.1007/BF02790750. Google Scholar

[8]

, Accretive operators and existence for nonlinear functional differential equations,, J. Differential Equations, 14 (1973), 57. doi: 10.1016/0022-0396(73)90076-4. Google Scholar

[9]

, Autonomous nonlinear functional differential equations and nonlinear semigroups,, J. Math. Anal. Appl., 46 (1974), 1. doi: 10.1016/0022-247X(74)90277-7. Google Scholar

[10]

, Abstract scattering for nonlinear evolution equations,, Math. Systems Theory, 8 (1974), 347. doi: 10.1007/BF01780581. Google Scholar

[11]

, An application of accretive operator theory to a nonlinear complex heat equation,, Bollettino dell Unione Mathematica ltaliana, 11 (1975), 604. Google Scholar

[12]

(with H. Riedl), Relative boundedness conditions and the perturbation of nonlinear operators,, Czechoslovak Math. J., 24 (1974), 395. Google Scholar

[13]

(with C. Travis), Existence and stability for partial functional differential equations,, Trans. Amer. Math. Soc., 200 (1974), 395. doi: 10.1090/S0002-9947-1974-0382808-3. Google Scholar

[14]

, Asymptotic stability for abstract nonlinear functional differential equations,, Proc. Amer. Math. Soc., 54 (1976), 225. doi: 10.1090/S0002-9939-1976-0402237-0. Google Scholar

[15]

, Functional differential equations and nonlinear semigroups in Lp spaces,, J. Differential Equations, 20 (1976), 71. doi: 10.1016/0022-0396(76)90097-8. Google Scholar

[16]

(with C. Travis), Partial differential equations with deviating arguments in the time variable,, J. Math. Anal. Appl., 56 (1976), 397. doi: 10.1016/0022-247X(76)90052-4. Google Scholar

[17]

, Linear functional differential equations with L2 initial functions,, Funkcialaj Ekvacioj., 19 (1976), 65. Google Scholar

[18]

(with G. Reddien), Bound, ary value problems for functional differential equations with L2 initial functions,, Trans. Amer. Math. Soc., 223 (1976), 305. Google Scholar

[19]

(with C. Travis), Existence and stability for partial functional differential equations,, in Dynamical Systems, 2 (1976), 147. Google Scholar

[20]

, Regularity of solutions to an abstract inhomogeneous linear differential equations,, Proc. Amer. Math. Soc., 62 (1977), 272. doi: 10.1090/S0002-9939-1977-0432996-3. Google Scholar

[21]

, Exponential representation of solutions to an abstract semi-linear differential equations,, Pacific J. Math., 70 (1977), 269. doi: 10.2140/pjm.1977.70.269. Google Scholar

[22]

, Asymptotic stability in the a-norm for an abstract nonlinear Volterra integral equation,, in Stability of Dynamical Systems, 28 (1977), 207. Google Scholar

[23]

, Volterra integral equations and nonlinear semigroups,, Nonl. Anal. Theory Math. Appl., 1 (1977), 415. Google Scholar

[24]

, Volterra integral equations as functional differential equations on infinite intervals,, Hiroshima Math. J., 7 (1977), 61. Google Scholar

[25]

(with C. Travis), Compactness, regularity, and uniform continuity properties of strongly continuous cosine families,, Houston J. Math., 3 (1977), 555. Google Scholar

[26]

(with C. Travis), Existence, stability, and compactness in the a-norm for partial functional differential equations,, Trans. Amer. Math. Soc., 240 (1978), 129. Google Scholar

[27]

(with C. Travis), Cosine families and abstract nonlinear second order differential equations,, Acta Math., 32 (1978), 75. doi: 10.1007/BF01902205. Google Scholar

[28]

, An abstract semilinear Volterra intergrodifferential equation,, Proc. Amer. Math. Soc., 69 (1978), 255. doi: 10.1090/S0002-9939-1978-0467214-4. Google Scholar

[29]

(with G. Reddien), Numerical approximation of nonlinear functional differential equations with L2 initial functions,, SIAM J. Math Anal., 9 (1978), 1151. doi: 10.1137/0509093. Google Scholar

[30]

(with C. Travis), An abstract second order semilinear Volterra intergrodifferential equation,, SIAM J. Math. Anal., 10 (1979), 412. doi: 10.1137/0510038. Google Scholar

[31]

(with C. Travis), Perturbations of strongly continuous cosine family generators,, Colloquium Mathematicum, 45 (1981), 277. Google Scholar

[32]

, A bifurcation problem for a nonlinear hyperbolic partial differential equation,, SIAM J. Math. Anal., 10 (1979), 922. doi: 10.1137/0510086. Google Scholar

[33]

(with C. Travis), Second order differential equations in Abstract Spaces,, in Proceedings of the Symposium on Nonlinear Equations in Abstract Spaces, (1978), 331. Google Scholar

[34]

, Abstract Volterra integrodifferential equations and a class of reaction-diffusion equations,, in Voleterra Equations (Proceedings of Helsinki Symposium on Integral Equations, 737 (1979), 295. Google Scholar

[35]

, A representation formula for strongly continuous cosine families,, Aequationes Mathematicae, 21 (1980), 251. doi: 10.1007/BF02189359. Google Scholar

[36]

, Existence and asymptotic behavior for a strongly damped nonlinear wave equation,, Can. J. Math., 32 (1980), 631. doi: 10.4153/CJM-1980-049-5. Google Scholar

[37]

, Compactness of bounded trajectories of dynamical systems in infinite dimensional spaces,, Proc. Royal Soc. Edinburgh, 84 (1979), 19. doi: 10.1017/S0308210500016930. Google Scholar

[38]

, A reaction-diffusion model for a deterministic diffusive epidemic,, J. Math. Anal. Appl., 84 (1981), 150. doi: 10.1016/0022-247X(81)90156-6. Google Scholar

[39]

, A deterministic diffusive epidemic model with an incubation period,, in Proceedings of the Functional Differential Equations and Integral Equations Conference, (1981), 18. Google Scholar

[40]

(with M. Badii), Nonlinear nonautonomous functional differential equations in Lp spaces,, Nonlinear Anal., 5 (1981), 203. doi: 10.1016/0362-546X(81)90045-6. Google Scholar

[41]

(with M. Badii), representation of solutions of functional differential equations with time-dependent delays,, Houston J. Math., 6 (1981), 544. Google Scholar

[42]

, An age-dependent epidemic model with spatial diffusion,, Arch. Rat. Mech. Anal., 75 (1980), 91. doi: 10.1007/BF00284623. Google Scholar

[43]

, A recovery-relapse epidemic model with spatial diffusion,, J. Math. Biol., 14 (1982), 177. doi: 10.1007/BF01832843. Google Scholar

[44]

, Nonlinear semigroups and age-dependent population models,, Annali di Mathematica Pura ed Applicata, 129 (1981), 43. doi: 10.1007/BF01762135. Google Scholar

[45]

, A genetics model with age-dependence and spatial diffusion,, in Proceedings of the Conference on Differential Equations and Applications to Ecology, (1981), 29. Google Scholar

[46]

, Diffusive age-dependent population models and an application to genetics,, Math. Biosci., 61 (1982), 1. doi: 10.1016/0025-5564(82)90092-X. Google Scholar

[47]

, Nonlinear age-dependent population dynamics with continuous age distributions,, in Proceedings of the Conference on Differential Equations and Applications (Schloss Retzhof, 68 (1982), 274. Google Scholar

[48]

, Nonlinear age-dependent population dynamics in L1,, J. Integral Equations, 5 (1983), 309. Google Scholar

[49]

, The semigroup associated with nonlinear age-dependent population dynamics,, Internat. J. Comput. Math. Appl., 9 (1983), 487. doi: 10.1016/0898-1221(83)90062-7. Google Scholar

[50]

(with R.Villella-Bressan), Nonautonomous functional equations and nonlinear evolution operators,, Rend. Sem. Mat. Univ. Padova, 71 (1984), 177. Google Scholar

[51]

(with K. Kunisch and W. Schappacher), Nonlinear age-dependent population dynamics with random diffusion - Hyperbolic partial differential equations, II., Comput. Math. Appl., 11 (1985), 155. doi: 10.1016/0898-1221(85)90144-0. Google Scholar

[52]

, A semigroup proof of the Sharpe-Lotka Theorem,, in Infinite-Dimensional Systems (Proceedings, 1076 (1984), 254. doi: 10.1007/BFb0072780. Google Scholar

[53]

, Dynamics of populations structured by internal variables,, Mathematische Zeitschrift, 189 (1985), 319. doi: 10.1007/BF01164156. Google Scholar

[54]

, Logistic models of structured population growth,, Internat. J. Comput. Math. Appl. I, 2A (1986), 527. Google Scholar

[55]

(with E. Sinestrari), Nonlinear hyperbolic systems with nonlocal boundary conditions,, J. Math. Anal. Appl., 121 (1987), 449. doi: 10.1016/0022-247X(87)90255-1. Google Scholar

[56]

, A model of proliferating cell populations with inherited cycle length,, J. Math. Biol., 23 (1986), 269. doi: 10.1007/BF00276962. Google Scholar

[57]

, An operator-theoretic formulation of asynchronous exponential growth,, Trans. Amer. Math. Soc., 303 (1987), 751. doi: 10.1090/S0002-9947-1987-0902796-7. Google Scholar

[58]

(with A. Grabosch), Asynchronous exponential growth in transition probability models of the cell cycle,, SIAM J. Math. Anal., 18 (1987), 897. doi: 10.1137/0518068. Google Scholar

[59]

, Dynamics of structured populations with inherited properties,, Internat. J. Comput. Math. Appl., 13 (1987), 749. doi: 10.1016/0898-1221(87)90160-X. Google Scholar

[60]

(with M. Gyllenberg), Age-size structure in populations with quiescence,, Math. Biosci., 86 (1987), 67. doi: 10.1016/0025-5564(87)90064-2. Google Scholar

[61]

, Random transitions, size control, and inheritance in cell population dynamics,, Math. Biosci., 85 (1987), 71. doi: 10.1016/0025-5564(87)90100-3. Google Scholar

[62]

(with C. Chyan), A probabilistic model of proliferating cell populations with correlation of mother-daughter mitotic times,, Ann. Mat. Pura. Appl., 158 (1991), 1. doi: 10.1007/BF01759296. Google Scholar

[63]

(with D. Hardin and P. Takac), A comparison of dispersal strategies for survival of spatially heterogeneous populations,, SIAM J. Appl. Math., 48 (1988), 1396. doi: 10.1137/0148086. Google Scholar

[64]

, Alpha and beta curves, sister-sister and mother-daughter correlations in cell population dynamics,, Internat. J. Comput. Math. Appl., 18 (1989), 973. doi: 10.1016/0898-1221(89)90016-3. Google Scholar

[65]

(with D. Hardin and P Takac), Asymptotic properties of a continuous-space discrete-time populations model in a random environment,, J. Math. Biol., 26 (1988), 361. doi: 10.1007/BF00276367. Google Scholar

[66]

(with D. Hardin and P. Takac), Dispersion population models discrete in time and continuous in space,, J. Math. Biol., 28 (1990), 1. doi: 10.1007/BF00171515. Google Scholar

[67]

, Resonance phenomena in cell population chemotherapy models,, Rocky Mountain J. Math., 20 (1990), 1195. doi: 10.1216/rmjm/1181073070. Google Scholar

[68]

, Semigroup methods in populations dynamics: Proliferating cell populations,, in Semigroup Theory and Applications, 116 (1989), 441. Google Scholar

[69]

(with M. Gyllenberg), Quiescence as an explanation of Gompertzian tumor growth,, Growth, 53 (1989), 25. Google Scholar

[70]

(With M. Gyllenberg), A nonlinear structured population model of tumor growth with quiescence,, J. Math. Biol., 28 (1990), 671. doi: 10.1007/BF00160231. Google Scholar

[71]

(with M. Gyllenberg), Quiescence in structured population dynamics: Applications to tumor growth,, in Mathematical population dynamics (Proceedings of the 2nd International Conference on Mathematical Population Dynamics, 131 (1991), 45. Google Scholar

[72]

(with M. Gyllenberg), Asynchronous exponential growth of semigroups of nonlinear operators,, J. Math. Anal. Appl., 167 (1992), 443. doi: 10.1016/0022-247X(92)90218-3. Google Scholar

[73]

, A cell population model of periodic chemotherapy treatment,, in Biomedical Modeling and Simulation, (1992), 83. Google Scholar

[74]

, Asynchronous exponential growth in differential equations with homogeneous nonlinearities,, in Differential Equations in Banach Spaces, 148 (1993), 225. Google Scholar

[75]

, A nonlinear cell population model of periodic chemotherapy treatment,, in Recent Trends in Ordinary Differential Equations, 1 (1992), 569. Google Scholar

[76]

, Convexity of the growth bound of C0-semigroups of operators,, in Semigroups of Linear and Nonlinear Operators and Applications, (1993), 259. Google Scholar

[77]

, Asynchronous exponential growth in differential equations with asymptotically homogeneous nonlinearities,, Adv. Math. Sci. Appl., 3 (): 43. Google Scholar

[78]

, Resonances in periodic chemotherapy scheduling,, in Proceedings of the First World Congress of Nonlinear Analysts, (1996), 3463. Google Scholar

[79]

, Growth bounds of solutions of abstract nonlinear differential equations,, Diff. Int. Eqs., 7 (1994), 1145. Google Scholar

[80]

(with W. E. Fitzgibbon and M. E. Parrott), Diffusion epidemic models with incubation and crisscross dynamics,, Math. Biosci., 128 (1995), 131. doi: 10.1016/0025-5564(94)00070-G. Google Scholar

[81]

(with W. E. Fitzgibbon and M. E. Parrott), Diffusive epidemic models with spatial and age dependence,, Discrete Contin. Dynam. Syst., 1 (1995), 35. Google Scholar

[82]

, Periodic and chaotic behavior in structured models of cell population dynamics,, in Recent Developments in Evolution Equations, 324 (1995), 40. Google Scholar

[83]

(with Denise Kirschner), A model for treatment strategy in the chemotherapy of AIDS,, Bull. Math. Biol., 58 (1996), 367. doi: 10.1016/0092-8240(95)00345-2. Google Scholar

[84]

(with M. Johnson), Resonances in age structured cell population models of periodic chemotherapy,, Internat. J. Appl. Sci. Comp., 3 (1996), 57. Google Scholar

[85]

(with W. E. Fitzgibbon and M. E. Parrott), A diffusive epidemic model for a host-vector system,, in Differential Equations and Applications to Biology and to Industry, (1996), 401. Google Scholar

[86]

(with W. Desch and W. Schappacher), Hypercyclic and chaotic semigroups of linear operators,, Ergodic Theory Dynam. Syst., 17 (1997), 793. doi: 10.1017/S0143385797084976. Google Scholar

[87]

(with W. E. Fitzgibbon, M. Langlais and M. E. Parrott), A diffusive system with age dependence modeling FIV,, Nonlinear Anal. Theory Meth. Appl., 25 (1995), 975. doi: 10.1016/0362-546X(95)00092-A. Google Scholar

[88]

(with 0. Arino and M. Kimmel), Mathematical modelling of the loss of telomere sequences,, J. Theoret. Biol., 177 (1995), 45. doi: 10.1006/jtbi.1995.0223. Google Scholar

[89]

(with J. Dyson and R. Villella-Bressan), A singular transport equation modelling a proliferating maturity structured cell population,, Canadian Appl. Math. Quart., 4 (1996), 65. Google Scholar

[90]

(with 0. Arino and E. Sanch.ez), Polynomial growth of telomere loss in a heterogenous cell population,, Dynam. Contin. Discrete Impulsive Syst., 3 (1997), 263. Google Scholar

[91]

(with W. E. Fitzgibbon and M. E. Parrott), A diffusive age-structured SEIRS epidemic model,, Meth. Appl. Anal., 3 (1996), 358. Google Scholar

[92]

(with W. E. Fitzgibbon, J. Morgan and M. E. Parrott), Drug resistance in diffusive epidemic population models,, in Advances in Mathematical Population Dynamics - Molecules, 6 (1998), 613. Google Scholar

[93]

(with J. Dyson and R. Villella-Bressan), Hypercyclicity of a transport equation with delays,, Nonlinear Anal. Theory Meth. Appl., 29 (1997), 1343. doi: 10.1016/S0362-546X(96)00192-7. Google Scholar

[94]

(with Denise Kirschner), Understanding drug resistance for monotherapy treatment of HIV infection,, Bull. Math. Biol., 59 (1997), 763. doi: 10.1016/S0092-8240(97)00038-4. Google Scholar

[95]

(with Denise Kirschner), A mathematical model of combined drug therapy of HIV infection,, J. Theoret. Med., 1 (1997), 25. doi: 10.1080/10273669708833004. Google Scholar

[96]

(with W. E. Fitzgibbon, J. Morgan and M. E. Parrott), An age dependent regularization of Martin's problem,, in Reaction Diffusion Systems, 194 (1998), 131. Google Scholar

[97]

(with Denise Kirschner), Qualitative differences in HIV chemotherapy between resistance and remission outcomes,, Emerg. Infect. Dis., 3 (1997), 273. Google Scholar

[98]

(with 0. Arino and E. Sanchez), Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence,, J. Math. Anal. Appl., 215 (1997), 499. doi: 10.1006/jmaa.1997.5654. Google Scholar

[99]

(with Denise Kirschner), \doititle{Immunotherapy of HIV infection},, J. Biol. Systems, 6 (1998), 71. doi: 10.1142/S0218339098000091. Google Scholar

[100]

(with J. Dyson and R. Villella-Bressan), An age and maturity structured model of cell population dynamics,, in Mathematical Models in Medical and Health Science (Proceedings of the Conference on Mathematical Models in Medical and Health Sciences), (1999), 99. Google Scholar

[101]

(with Li Zhou, Yiping Fu, Mengxing He and Kaitai Song), Solutions of a class of first order partial differential equations with delay,, in Proceedings of the Conference on Nonlinear Partial Differential Equations and Applications (Chongquing University, (1998), 26. Google Scholar

[102]

(with Miles Cloyd and Denise Kirschner), A model of HIV- I disease progression based on virus-induced lymph node homing and homing-induced apoptosis of CD4+ lymphocytes,, J. AIDS, 24 (2000), 352. Google Scholar

[103]

(with J. Dyson and R. Villella-Bressan), A Nonlinear age and maturity structured model of population dynamics. I. Basic Theory,, J. Math. Anal. Appl., 242 (2000), 93. doi: 10.1006/jmaa.1999.6656. Google Scholar

[104]

(with J. Dyson and R. Villella-Bressan), A Nonlinear age and maturity structured model of population dynamics. II. Chaos,, J. Math. Anal. Appl., 242 (2000), 255. doi: 10.1006/jmaa.1999.6657. Google Scholar

[105]

(with P. Magat), Mutation, selection, and recombination in a model of phenotype evolution,, Discrete Contin. Dynam. Syst., 6 (2000), 221. Google Scholar

[106]

(with J. Dyson and R. Villella-Bressan), A maturity structured model of a population of proliferating and quiescent cells,, Archives of Control Sciences, 9 (1999), 201. Google Scholar

[107]

(with M. Blaser), Dynamics of bacterial phenotype selection in a colonized host,, Proc. Natl. Acad. Sci., 99 (2002), 3135. doi: 10.1073/pnas.042685799. Google Scholar

[108]

(with J. Dyson and R. Villella-Bressan), Asynchronous exponential growth in an age structured population of proliferating and quiescent cells,, Math. Biosci., 177-178 (2002), 177. doi: 10.1016/S0025-5564(01)00097-9. Google Scholar

[109]

, The prime number periodical cicada problem,, Discrete Contin. Dynam. Syst. Ser. B, 1 (2001), 387. doi: 10.3934/dcdsb.2001.1.387. Google Scholar

[110]

(with Seema Bajaria, Miles Cloyd and Denise Kirschner), Dynamics of nave and memory CD4+ T lymphocytes in HIV-I disease progression,, J. AIDS, 30 (2002), 41. Google Scholar

[111]

(with E. D'Agata and M. A. Horn), The impact of persistent gastrointestinal colonization on the transmission dynamics of vancomycin-resistant enterococci,, J. Infect. Dis., 185 (2002), 766. Google Scholar

[112]

, The steady state of a tumor cord cell population,, J. Evol. Eqs., 2 (2002), 425. doi: 10.1007/PL00012598. Google Scholar

[113]

(with M. Blaser), Mailborne transmission of anthrax: Modeling and implications,, Proc. Natl. Acad. Sci., 99 (2002), 7027. Google Scholar

[114]

(with R. Cutshaw and S.Ruan), A mathematical model of cell-to-cell spread of HIV that includes a time delay,, J. Math. Biol., 46 (2003), 425. doi: 10.1007/s00285-002-0191-5. Google Scholar

[115]

, The silent bomb: The risk of anthrax as a weapon of mass destruction,, Proc. Nat. Acad. Sci., 100 (2003), 4355. Google Scholar

[116]

(with J. Dyson and R. Villella-Bressan), A semilinear transport equation with delays,, Int. J. Math. Math. Sci., 2003 (2003), 2011. doi: 10.1155/S0161171203211431. Google Scholar

[117]

(with J. Dyson and R. Villella-Bressan), The steady state of a maturity structured tumor cord cell population,, Discrete Contin. Dynam. Syst. Ser. B, 4 (2004), 115. Google Scholar

[118]

, Structured population dynamics,, Banach Center Publications, 63 (2004), 123. Google Scholar

[119]

(with Seema Bajaria and Denise Kirschner), Predicting differential responses to structured treatment interruptions during HAART,, Bull. Math. Biol., 66 (2004), 1093. doi: 10.1016/j.bulm.2003.11.003. Google Scholar

[120]

(with M. Blaser, H. Zhu, S. Ardal and J. Wu), Critical role of nosocomial transmission in the Toronto SARS, outbreak,, Math. Biosci. Eng., 1 (2004), 1. doi: 10.3934/mbe.2004.1.1. Google Scholar

[121]

(with J. Dyson and R. Villella-Bressan), The evolution of a tumor cord cell population,, Comm. Pure Appl. Anal., 3 (2004), 331. doi: 10.3934/cpaa.2004.3.331. Google Scholar

[122]

(with E. D'Agata and M. A. Horn), A mathematical model quantifying the impact of antibiotic exposure, surveillance cultures and other interventions on the prevalence of vancomycin-resistant enterococci,, J. Infect. Dis., 192 (2005), 2004. Google Scholar

[123]

(with M. Greer and L. Pujo-Menjouet), A mathematical analysis of the dynamics of prion proliferation,, J. Theoret. Biol., 242 (2006), 598. doi: 10.1016/j.jtbi.2006.04.010. Google Scholar

[124]

, Being prepared: Modeling the response to an anthrax attack,, Ann. Int. Med., 142 (2005), 667. Google Scholar

[125]

(with E.M.C. D'Agata, P. Magal, and S. Ruan), A model of antibiotic resistant bacterial epidemics in hospitals,, Proc. Nat. Acad. Sci., 102 (2005), 13343. Google Scholar

[126]

(with E. M. C., D'Agata, P. Magal and S. Ruan), Asymptotic behavior in nonsocomial epidemic models with antibiotic resistance,, Diff. Int. Eqs., 19 (2006), 573. Google Scholar

[127]

(with B. Ayati and A. R. A. Anderson), Computational methods and results for structured multiscale models of tumor invasion,, SIAM Multiscale Modeling and Simulation, 5 (2006), 1. doi: 10.1137/050629215. Google Scholar

[128]

(with J. Pruss, L. Pujo-Menjouet and R. Zacher), Analysis of a model for the dynamics of prions,, Discrete Contin. Dynam. Syst. Ser. B, 6 (2006), 215. Google Scholar

[129]

(with H. Engler and J. Pruss), Analysis of a model for the dynamics of prions II,, J. Math. Anal. Appl., 324 (2006), 98. doi: 10.1016/j.jmaa.2005.11.021. Google Scholar

[130]

(with C. Walker), Global existence of classical solutions for a haptotaxis model,, SIAM J. Math. Anal., 38 (2007), 1694. doi: 10.1137/060655122. Google Scholar

[131]

(with J. Dyson and R. Villella-Bressan), Asymptotic behavior of solutions to abstract logistic equations,, Math. Biosci., 206 (2007), 216. doi: 10.1016/j.mbs.2005.08.005. Google Scholar

[132]

(with J. Dyson, R. Villella-Bressan and E. Sanchez), Stabilization of telomeres in nonlinear models of proliferating cell lines,, J. Theoret. Biol., 244 (2007), 400. doi: 10.1016/j.jtbi.2006.08.023. Google Scholar

[133]

, Population models structured by age, size and spatial position,, in Structured Population Models in Biology and Epidemiology, 1936 (2008), 1. doi: 10.1007/978-3-540-78273-5_1. Google Scholar

[134]

(with E. D'Agata and M. A. Horn), Quantifying the impact of bacterial fitness and repeated antimicrobial exposure on the emergence of multidrug-resistant gram-negative bacilli,, Math. Mod. Nat. Phenom., 2 (2007), 129. doi: 10.1051/mmnp:2008014. Google Scholar

[135]

(with M. Greer, P. van den Driessche and L. Wang), Effects of general incidence and polymer joining on nucleated polymerization in a prion disease model,, SIAM J. Appl. Math., 68 (2007), 154. doi: 10.1137/06066076X. Google Scholar

[136]

(with E. D'Agata, P. Magal, D. Olivier and S. Ruan), Modeling antibiotic resistance in hospitals: The impact of minimizing treatment duration,, J. Theoret. Biol., 249 (2007), 487. doi: 10.1016/j.jtbi.2007.08.011. Google Scholar

[137]

(with P. Hinow, S. E. Wang, and C. L. Arteaga), Mathematical model separates quantitatively the cytostatic and cytotoxic effects of a HER2 tyrosine kinase inhibitor,, Theoret. Biol. Med. Mod., 4 (2007). doi: 10.1186/1742-4682-4-14. Google Scholar

[138]

(with J. Dyson, R. Villella-Bressan and E. Sanchez), An age and spatially structured model of tumor invasion with haptotaxis,, Discrete Contin. Dynam. Syst. Ser. B, 8 (2007), 45. doi: 10.3934/dcdsb.2007.8.45. Google Scholar

[139]

(with J. Dyson and R. Villella-Bressan), An age and spatially structured model of tumor invasion with haptotaxis II,, Math. Pop. Studies, 15 (2008), 73. doi: 10.1080/08898480802010159. Google Scholar

[140]

(with J. Dyson and R. Villella-Bressan), A spatial model of tumor growth with cell age, cell size, and mutation of cell phenotypes,, Math. Mod Nat. Phenom., 2 (2007), 69. doi: 10.1051/mmnp:2007004. Google Scholar

[141]

(with W-Y. Tan and W. Ke), A state space model for tumor growth and applications,, Comp. Math. Meth. Med., 10 (2009), 117. Google Scholar

[142]

(with J. Dyson and R. Villella-Bressan), Global existence and boundedness of solutions to a model of chemotaxis,, Math. Mod. Nat. Phen., 3 (2008), 17. doi: 10.1051/mmnp:2008039. Google Scholar

[143]

(S. E. Wang, P. Hinow, N. Bryce, A. M. Weaver, L. Estrada and C. L. Arteaga), A mathematical model quantifies proliferation and motility effects of TGF-$\beta$ on cancer cells,, Comp. Math. Meth. Med., 10 (2009), 71. doi: 10.1080/17486700802171993. Google Scholar

[144]

(with P. Gomez-Mourelo, E. Sanchez and L. Casasus), A fully continuous individual-based model of tumor cell evolution,, Comptes Rendus Biologies, 31 (2008), 823. Google Scholar

[145]

(with E. D'Agata, M. A. Horn, R. Moellering and S. Ruan), Modeling the invasion of community-acquired methicillin-resistant Staphylococcus aureus into the hospital setting,, Clin. Infect. Dis., 48 (2009), 274. Google Scholar

[146]

(with P. Hinow, F. LeFoll and P. Magal), Analysis of a model for transfer phenomena in biological populations,, SIAM J. Appl. Math., 70 (2009), 40. doi: 10.1137/080732420. Google Scholar

[147]

(with E. D'Agata, M. A. Horn, R. Moellering and S. Ruan), Competition of Hospital-Acquired and Community-Acquired Methicillin-Resistant Staphylococcus aureus Strains in Hospitals,, J. Biol. Dyn., 4 (2010), 115. doi: 10.1080/17513750903026411. Google Scholar

[148]

(with C. McCluskey and P. Magal), Liapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109. doi: 10.1080/00036810903208122. Google Scholar

[149]

(with B. Ayati, C. Edwards and J. Wikswo), A mathematical model of bone remodeling dynamics for normal and tumor bone cell populations,, published online, 5 (2010). Google Scholar

[150]

(with M. Blaser, Y-H. Hsieh and J. Wu), Pre-symptomatic influenza transmission, surveillance, and school closings,, Math. Mod. Nat. Phenom., 5 (2010), 191. doi: 10.1051/mmnp/20105312. Google Scholar

[151]

(with E. M. C. D'Agata and J. Pressley), Rapid emergence of co-colonization with community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus strains in the hospital setting,, Math. Mod. Nat. Phenom., 5 (2010), 76. doi: 10.1051/mmnp/20105306. Google Scholar

[152]

(with J. Dyson, S. A. Gourley and R. Villella-Bressan), Existence and asymptotic properties of solutions of a nonlocal evolution equation modelling cell-cell adhesion,, SIAM J. Math. Anal., 42 (2010), 1784. doi: 10.1137/090765663. Google Scholar

[153]

(with E. M. C. D'Agata and J. Pressley), The effect of co-colonization with community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus strains on competitive exclusion,, J. Theoret. Biol., 264 (2010), 645. Google Scholar

[154]

(with J. Pasquier, P. Magal, C. Boulang-Lecomte and F. Le Foll), Consequences of cell-to-cell P-glycoprotein transfer on acquired multidrug resistance in breast cancer: A cell population dynamics model,, Biology Direct, 6 (2011). doi: 10.1186/1745-6150-6-5. Google Scholar

[155]

(with A. Ducrot, F. LeFoll, P. Magal, H. Murakawa and J. Pasquier), An in vitro cell population dynamics model incorporating cell size, quiescence, and contact inhibition,, Math. Mod. Meth. Appl. Sci., 21 (2011), 871. doi: 10.1142/S0218202511005404. Google Scholar

[156]

, Event based interpretation of Schrodinger's equation for the two-slit experiment,, Int. J. Theor. Phys., 50 (2011), 3571. doi: 10.1007/s10773-011-0866-z. Google Scholar

[157]

(with D. T. Grima and E. M. C D'Agata), Mathematical model of the impact of a non-antibiotic treatment for Clostridium difficile on the endemic prevalence of vancomycin-resistant enterococci in a hospital setting,, Comp. Math. Meth. Med., 2012 (2012). doi: 10.1155/2012/605861. Google Scholar

[158]

(with J. Pasquier, L. Galas, C. Boulang-Lecomte, D. Rioult, F. Bultelle, P. Magal and F. Le Foll), Tunneling nanotubes and released microparticles both contribute to extragenetic cell-to-cell p-glycoprotein transfers in mcf-7 breast cancer cells,, J. Biol. Chem., 287 (2012), 7373. Google Scholar

[159]

(with P. Gabriel, S. Garbett, D. Tyson and V. Quaranta), The contribution of age structure to cell population responsesto targeted therapeutics,, J. Theoret. Biol., 311 (2012), 19. doi: 10.1016/j.jtbi.2012.07.001. Google Scholar

[160]

, R0,, Hektoen International Journal, 3 (2011). Google Scholar

[161]

(with E. M. C. D'Agata, M. A. Horn, S. Ruan and J. R. Wares), Efficacy of infection control interventions in reducing the spread of multidrug-resistant organisms in the hospital setting,, PLoS ONE, 7 (2012). doi: 10.1371/journal.pone.0030170. Google Scholar

[162]

(with J. Dyson and S.A. Gourley), A nonlocal evolution equation model of cell-cell adhesion in higher dimensional space,, J. Biol. Dyn., 7 (2013), 68. doi: 10.1080/17513758.2012.755572. Google Scholar

[163]

(with M. Helal, E. Hingant, L. Pujo-Menjouet), Alzheimer's disease: Analysis of a mathematical model incorporating the role of prions,, J. Math. Biol., 69 (2014), 1207. doi: 10.1007/s00285-013-0732-0. Google Scholar

[164]

(with J. Dyson), A cell population model structured by cell age incorporating cell-cell adhesion,, in Mathematical Oncology 2013 (Eds. A. d'Onofrio and A. Gandolfi), (2014), 109. doi: 10.1007/978-1-4939-0458-7_4. Google Scholar

[165]

(with M. J. Blaser), Host demise as a beneficial function of indigenous microbiota in human hosts,, mBio, 5 (2014), 02262. doi: 10.1128/mBio.02262-14. Google Scholar

[1]

Martin J. Blaser. Studying microbiology with Glenn F. Webb. Mathematical Biosciences & Engineering, 2015, 12 (4) : xvii-xxii. doi: 10.3934/mbe.2015.12.4xvii

[2]

Juan Pablo Aparicio, Juan Carlos Corley, Jorge Eduardo Rabinovich. Life history traits of Sirex Noctilio F. (Hymenoptera: Siricidae) can explain outbreaks independently of environmental factors. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1265-1279. doi: 10.3934/mbe.2013.10.1265

[3]

Xifeng Su, Rafael de la Llave. On a remarkable example of F. Almgren and H. Federer in the global theory of minimizing geodesics. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7057-7080. doi: 10.3934/dcds.2019295

[4]

Jacek Banasiak, Marcin Moszyński. A generalization of Desch--Schappacher--Webb criteria for chaos. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 959-972. doi: 10.3934/dcds.2005.12.959

[5]

Carlangelo Liverani. On the work and vision of Dmitry Dolgopyat. Journal of Modern Dynamics, 2010, 4 (2) : 211-225. doi: 10.3934/jmd.2010.4.211

[6]

Roger Temam. Mark Vishik and his work. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : i-vi. doi: 10.3934/dcds.2004.10.1i

[7]

Yihong Du. The work of Norman Dancer. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1807-1833. doi: 10.3934/dcdss.2019119

[8]

Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227

[9]

Ralf Spatzier. On the work of Rodriguez Hertz on rigidity in dynamics. Journal of Modern Dynamics, 2016, 10: 191-207. doi: 10.3934/jmd.2016.10.191

[10]

Nikolai Chernov. The work of Dmitry Dolgopyat on physical models with moving particles. Journal of Modern Dynamics, 2010, 4 (2) : 243-255. doi: 10.3934/jmd.2010.4.243

[11]

Tuan Phung-Duc, Ken’ichi Kawanishi. Multiserver retrial queues with after-call work. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 639-656. doi: 10.3934/naco.2011.1.639

[12]

Yakov Pesin. On the work of Sarig on countable Markov chains and thermodynamic formalism. Journal of Modern Dynamics, 2014, 8 (1) : 1-14. doi: 10.3934/jmd.2014.8.1

[13]

Dmitry Dolgopyat. The work of Federico Rodriguez Hertz on ergodicity of dynamical systems. Journal of Modern Dynamics, 2016, 10: 175-189. doi: 10.3934/jmd.2016.10.175

[14]

François Ledrappier. Erratum: On Omri Sarig's work on the dynamics of surfaces. Journal of Modern Dynamics, 2015, 9: 355-355. doi: 10.3934/jmd.2015.9.355

[15]

Martin Hanke. Why linear sampling really seems to work. Inverse Problems & Imaging, 2008, 2 (3) : 373-395. doi: 10.3934/ipi.2008.2.373

[16]

François Ledrappier. On Omri Sarig's work on the dynamics on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 15-24. doi: 10.3934/jmd.2014.8.15

[17]

Bruce Kitchens, Brian Marcus, Benjamin Weiss. Roy Adler and the lasting impact of his work. Journal of Modern Dynamics, 2018, 13: ⅴ-ⅹ. doi: 10.3934/jmd.2018v

[18]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[19]

Fernando Alcalde Cuesta, Ana Rechtman. Minimal Følner foliations are amenable. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 685-707. doi: 10.3934/dcds.2011.31.685

[20]

Goong Chen. David L. Russell and a survey of his mathematical work. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1265-1277. doi: 10.3934/dcdsb.2010.14.1265

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]