\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimality and stability of symmetric evolutionary games with applications in genetic selection

Abstract / Introduction Related Papers Cited by
  • Symmetric evolutionary games, i.e., evolutionary games with symmetric fitness matrices, have important applications in population genetics, where they can be used to model for example the selection and evolution of the genotypes of a given population. In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. In particular, we review the relationship between the symmetric evolutionary game and the generalized knapsack problem, and discuss the first and second order necessary and sufficient conditions that can be derived from this relationship for testing the optimality and stability of the strategies. Some of the conditions are given in different forms from those in previous work and can be verified more efficiently. We also derive more efficient computational methods for the evaluation of the conditions than conventional approaches. We demonstrate how these conditions can be applied to justifying the strategies and their stabilities for a special class of genetic selection games including some in the study of genetic disorders.
    Mathematics Subject Classification: Primary: 49K30, 65K10, 91A22, 92D15, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, 1979.

    [2]

    I. Bomze, Regularity vs. degeneracy in dynamics, games, and optimization: A unified approach to different aspects, SIAM Review, 44 (2002), 394-414.doi: 10.1137/S00361445003756.

    [3]

    J. M. Borwein, Necessary and sufficient conditions for quadratic minimality, Numer. Funct. Anal. Optim., 5 (1982), 127-140.doi: 10.1080/01630568208816135.

    [4]

    S. Boyd and L. Vandeberghe, Convex Optimization, Cambridge University Press, 2004.doi: 10.1017/CBO9780511804441.

    [5]

    N. A. Campbell, J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky and R. B. Jackson, Biology, $8^{th}$ edition, Pearson Education Inc., 2008.

    [6]

    W. J. Ewens, Mathematical Population Genetics, Springer-Verlag, New York, 2004.

    [7]

    R. A. Fisher, The Genetic Theory of Natural Selection, Clarendon Press, Oxford, 1999.

    [8]

    G. H. Hardy, Mendelian proportions in a mixed population, Zeitschrift für Induktive Abstammungs- und Vererbungslehre, 1 (1908), p395.doi: 10.1007/BF01990610.

    [9]

    J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998.doi: 10.1017/CBO9781139173179.

    [10]

    J. Maynard Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15-18.doi: 10.1038/246015a0.

    [11]

    T. Motzkin and E. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canadian J. Math., 17 (1965), 533-540.doi: 10.4153/CJM-1965-053-6.

    [12]

    K. G. Murty and S. N. Kabadi, Some NP-complete problems in quadratic and linear programming, Math. Programming, 39 (1987), 117-129.doi: 10.1007/BF02592948.

    [13]

    J. Nash, Equilibrium points in $n$-person games, Proceedings of the National Academy of Sciences, 36 (1950), 48-49.doi: 10.1073/pnas.36.1.48.

    [14]

    J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York, 2006.

    [15]

    P. Pardalos, Y. Ye and C. Han, Algorithms for the solution of quadratic knapsack problems, Linear Algebra and Its Applications, 152 (1991), 69-91.doi: 10.1016/0024-3795(91)90267-Z.

    [16]

    W. H. Sandholm, Population Games and Evolutionary Dynamics, The MIT Press, 2010.

    [17]

    A. R. Templeton, Population Genetics and Microevolutionary Theory, John Wiley & Sons Inc., 2006.doi: 10.1002/0470047356.

    [18]

    L. N. Trefethen and D. Bau III, Numerical Linear Algebra, SIAM, 1997.

    [19]

    J. W. Weibull, Evolutionary Game Theory, The MIT Press, 1995.

    [20]

    W. Weinberg, Aber den nachweis der vererbung beim menschen, Jahreshefte des Vereins fur vaterlandische Naturkunde in Wurttemberg, 64 (1908), 368-382.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(47) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return