2015, 12(3): 525-536. doi: 10.3934/mbe.2015.12.525

Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection

1. 

Department of Mathematics, Beijing Technology and Business University, Beijing, 100048, China

Received  October 2014 Revised  December 2014 Published  January 2015

In this paper, the dynamical behavior of a viral infection model with general incidence rate and two time delays is studied. By using the Lyapunov functional and LaSalle invariance principle, the global stabilities of the infection-free equilibrium and the endemic equilibrium are obtained. We obtain a threshold of the global stability for the uninfected equilibrium, which means the disease will be under control eventually. These results can be applied to a variety of viral infections of disease that would make it possible to devise optimal treatment strategies. Numerical simulations with application to HIV infection are given to verify the analytical results.
Citation: Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525
References:
[1]

A. A. Canabarro, I. M. Gleria and M. L. Lyra, Periodic solutions and chaos in a non-linear model for the delayed cellular immune response,, Physica A, 342 (2004), 234.  doi: 10.1016/S0378-4371(04)00503-5.  Google Scholar

[2]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365.  doi: 10.1007/BF00178324.  Google Scholar

[3]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibra for compartmental models of disease trensmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[4]

S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential model of hepatitis B virus infection,, J. Biol. Dynam., 2 (2008), 140.  doi: 10.1080/17513750701769873.  Google Scholar

[5]

K. Hattaf, N. Yousfi and A. Tridane, Mathematical analysis of a virus dynamics model with general incidence rate and cure rate,, Nonlinear Anal-Real, 13 (2012), 1866.  doi: 10.1016/j.nonrwa.2011.12.015.  Google Scholar

[6]

Z. X. Hu, J. J. Zhang and H. Wang, et al., Dynamics analysis of a delayed viral infection model with logistic growth and immune impairment,, Appl. Math. Model., 38 (2014), 524.  doi: 10.1016/j.apm.2013.06.041.  Google Scholar

[7]

G. Huang, W. B. Ma and Y. Takeuchi, Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 24 (2011), 1199.  doi: 10.1016/j.aml.2011.02.007.  Google Scholar

[8]

Y. Ji, L. Q. Min and Y. A. Ye, Global analysis of a viral infection model with application to HBV infection,, J. Biol. Syst., 18 (2010), 325.  doi: 10.1142/S0218339010003299.  Google Scholar

[9]

S. Lewin, T. Walters and S. Locarnini, Hepatitis B treatment: Rational combination chemotherapy based on viral kinetic and animal model studies,, Antivir. Res., 55 (2002), 381.  doi: 10.1016/S0166-3542(02)00071-2.  Google Scholar

[10]

D. Li and W. B. Ma, Asymptotic properties of an HIV-1 infection model with time delay,, J. Math. Anal. Appl., 335 (2007), 683.  doi: 10.1016/j.jmaa.2007.02.006.  Google Scholar

[11]

L. Q. Min, Y. M. Su and Y. Kuang, Mathematical analysis of a basic virus infection model with application to HBV infection,, Rocky Mt. J. Math., 38 (2008), 1573.  doi: 10.1216/RMJ-2008-38-5-1573.  Google Scholar

[12]

Y. Nakata, Global dynamics of a viral infection model with a latent period and Beddington-DeAngelis response,, Nonlinear Anal-Theor., 74 (2011), 2929.  doi: 10.1016/j.na.2010.12.030.  Google Scholar

[13]

M. A. Nowak and R. M. May, Virus Dynamics,, Oxford University Press, (2000).   Google Scholar

[14]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3.  doi: 10.1137/S0036144598335107.  Google Scholar

[15]

X. Y. Song and A. U. Neumann, Global stability and periodic solution of the viral dynamics,, J. Math. Anal. Appl., 329 (2007), 281.  doi: 10.1016/j.jmaa.2006.06.064.  Google Scholar

[16]

X. Y. Song, X. Y. Zhou and X. Zhao, Properties of stability and Hopf bifurcaion for a HIV infection model with time delay,, Appl. Math. Model., 34 (2010), 1511.  doi: 10.1016/j.apm.2009.09.006.  Google Scholar

[17]

Y. N. Tian and X. N. Liu, Global dynamics of a virus dynamical model with general incidence rate and cure rate,, Nonlinear Anal-Real, 16 (2014), 17.  doi: 10.1016/j.nonrwa.2013.09.002.  Google Scholar

[18]

K. F. Wang, A. J. Fan and A. Torres, Global properties of an improved hepatitis B virus model,, Nonlinear Anal-Real, 11 (2010), 3131.  doi: 10.1016/j.nonrwa.2009.11.008.  Google Scholar

[19]

T. L. Wang, Z. X. Hu and F. C. Liao, et al., Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity,, Math. Comput. Simulat., 89 (2013), 13.  doi: 10.1016/j.matcom.2013.03.004.  Google Scholar

[20]

S. L. Wang, X. Y. Song and Z. H. Ge, Dynamics analysisi of a delayed viral infection model with immune impairment,, Appl. Math. Model., 35 (2011), 4877.  doi: 10.1016/j.apm.2011.03.043.  Google Scholar

[21]

Z. P. Wang and R. Xu, Stability and Hopf bifurcation in a viral infection model with nonlinear incidence rate and delayed immune response,, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 964.  doi: 10.1016/j.cnsns.2011.06.024.  Google Scholar

[22]

R. Xu, Global stability of an HIV-1 infection model with saturation infection and intracellular delay,, J. Math. Anal. Appl., 375 (2011), 75.  doi: 10.1016/j.jmaa.2010.08.055.  Google Scholar

show all references

References:
[1]

A. A. Canabarro, I. M. Gleria and M. L. Lyra, Periodic solutions and chaos in a non-linear model for the delayed cellular immune response,, Physica A, 342 (2004), 234.  doi: 10.1016/S0378-4371(04)00503-5.  Google Scholar

[2]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations,, J. Math. Biol., 28 (1990), 365.  doi: 10.1007/BF00178324.  Google Scholar

[3]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibra for compartmental models of disease trensmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[4]

S. A. Gourley, Y. Kuang and J. D. Nagy, Dynamics of a delay differential model of hepatitis B virus infection,, J. Biol. Dynam., 2 (2008), 140.  doi: 10.1080/17513750701769873.  Google Scholar

[5]

K. Hattaf, N. Yousfi and A. Tridane, Mathematical analysis of a virus dynamics model with general incidence rate and cure rate,, Nonlinear Anal-Real, 13 (2012), 1866.  doi: 10.1016/j.nonrwa.2011.12.015.  Google Scholar

[6]

Z. X. Hu, J. J. Zhang and H. Wang, et al., Dynamics analysis of a delayed viral infection model with logistic growth and immune impairment,, Appl. Math. Model., 38 (2014), 524.  doi: 10.1016/j.apm.2013.06.041.  Google Scholar

[7]

G. Huang, W. B. Ma and Y. Takeuchi, Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 24 (2011), 1199.  doi: 10.1016/j.aml.2011.02.007.  Google Scholar

[8]

Y. Ji, L. Q. Min and Y. A. Ye, Global analysis of a viral infection model with application to HBV infection,, J. Biol. Syst., 18 (2010), 325.  doi: 10.1142/S0218339010003299.  Google Scholar

[9]

S. Lewin, T. Walters and S. Locarnini, Hepatitis B treatment: Rational combination chemotherapy based on viral kinetic and animal model studies,, Antivir. Res., 55 (2002), 381.  doi: 10.1016/S0166-3542(02)00071-2.  Google Scholar

[10]

D. Li and W. B. Ma, Asymptotic properties of an HIV-1 infection model with time delay,, J. Math. Anal. Appl., 335 (2007), 683.  doi: 10.1016/j.jmaa.2007.02.006.  Google Scholar

[11]

L. Q. Min, Y. M. Su and Y. Kuang, Mathematical analysis of a basic virus infection model with application to HBV infection,, Rocky Mt. J. Math., 38 (2008), 1573.  doi: 10.1216/RMJ-2008-38-5-1573.  Google Scholar

[12]

Y. Nakata, Global dynamics of a viral infection model with a latent period and Beddington-DeAngelis response,, Nonlinear Anal-Theor., 74 (2011), 2929.  doi: 10.1016/j.na.2010.12.030.  Google Scholar

[13]

M. A. Nowak and R. M. May, Virus Dynamics,, Oxford University Press, (2000).   Google Scholar

[14]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3.  doi: 10.1137/S0036144598335107.  Google Scholar

[15]

X. Y. Song and A. U. Neumann, Global stability and periodic solution of the viral dynamics,, J. Math. Anal. Appl., 329 (2007), 281.  doi: 10.1016/j.jmaa.2006.06.064.  Google Scholar

[16]

X. Y. Song, X. Y. Zhou and X. Zhao, Properties of stability and Hopf bifurcaion for a HIV infection model with time delay,, Appl. Math. Model., 34 (2010), 1511.  doi: 10.1016/j.apm.2009.09.006.  Google Scholar

[17]

Y. N. Tian and X. N. Liu, Global dynamics of a virus dynamical model with general incidence rate and cure rate,, Nonlinear Anal-Real, 16 (2014), 17.  doi: 10.1016/j.nonrwa.2013.09.002.  Google Scholar

[18]

K. F. Wang, A. J. Fan and A. Torres, Global properties of an improved hepatitis B virus model,, Nonlinear Anal-Real, 11 (2010), 3131.  doi: 10.1016/j.nonrwa.2009.11.008.  Google Scholar

[19]

T. L. Wang, Z. X. Hu and F. C. Liao, et al., Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity,, Math. Comput. Simulat., 89 (2013), 13.  doi: 10.1016/j.matcom.2013.03.004.  Google Scholar

[20]

S. L. Wang, X. Y. Song and Z. H. Ge, Dynamics analysisi of a delayed viral infection model with immune impairment,, Appl. Math. Model., 35 (2011), 4877.  doi: 10.1016/j.apm.2011.03.043.  Google Scholar

[21]

Z. P. Wang and R. Xu, Stability and Hopf bifurcation in a viral infection model with nonlinear incidence rate and delayed immune response,, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 964.  doi: 10.1016/j.cnsns.2011.06.024.  Google Scholar

[22]

R. Xu, Global stability of an HIV-1 infection model with saturation infection and intracellular delay,, J. Math. Anal. Appl., 375 (2011), 75.  doi: 10.1016/j.jmaa.2010.08.055.  Google Scholar

[1]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[2]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[3]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[4]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[5]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[6]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[7]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[8]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[9]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[10]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[11]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[12]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[13]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[14]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[15]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[16]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[17]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[18]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[19]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[20]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]