• Previous Article
    Threshold dynamics of a periodic SIR model with delay in an infected compartment
  • MBE Home
  • This Issue
  • Next Article
    Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection
2015, 12(3): 537-554. doi: 10.3934/mbe.2015.12.537

Cell scale modeling of electropermeabilization by periodic pulses

1. 

Inria Bordeaux Sud-Ouest, 200, Rue de la Veille Tour, 33405 Talence, France

Received  November 2013 Revised  January 2015 Published  January 2015

In this paper, we focus on the behaviour of periodic solutions to a cell-scale electropermeabilization model previously proposed by Kavian et al. [6]. Since clinical permeabilization protocols mostly submit cancer cells to trains of periodic pulses, we investigate on parameters that modify significantly the resulting permeabilization. Theoretical results of existence and uniqueness of periodic solutions are presented, for two different models of membrane electric conductivity. Numerical simulations were performed to corroborate these results and illustrate the asymptotic convergence to periodic solutions, as well as the dependency on biological parameters such as the cell size and the extracellular conductivity.
Citation: Michael Leguèbe. Cell scale modeling of electropermeabilization by periodic pulses. Mathematical Biosciences & Engineering, 2015, 12 (3) : 537-554. doi: 10.3934/mbe.2015.12.537
References:
[1]

L. Calmels, B. Al-Sakere, J. P. Ruaud, A. Leroy-Willig and L. M. Mir, In vivo MRI follow-up of murine tumors treated by electrochemotherapy and other electroporation-based treatments,, Technology in Cancer Research and Treatment, 11 (2012), 561.  doi: 10.7785/tcrt.2012.500270.  Google Scholar

[2]

M. Cisternino and L. Weynans, A parallel second order cartesian method for elliptic interface problems,, Communications in Computational Physics, 12 (2012), 1562.   Google Scholar

[3]

K. DeBruin and W. Krassowska, Modelling electroporation in a single cell. I. Effects of field strength and rest potential,, Biophysical Journal, 77 (1999), 1213.  doi: 10.1016/S0006-3495(99)76973-0.  Google Scholar

[4]

A. Gothelf, L. M. Mir and J. Gehl, Electrochemotherapy: Results of cancer treatment using enhanced delivery of bleomycin by electroporation,, Cancer Treatment Reviews, 29 (2003), 371.  doi: 10.1016/S0305-7372(03)00073-2.  Google Scholar

[5]

R. P. Joshi, Q. Hu and K. H. Schoenbach, Dynamical modeling of cellular response to short-duration, high-intensity electric fields,, Dielectrics and Electrical Insulation, 10 (2003), 778.  doi: 10.1109/TDEI.2003.1237327.  Google Scholar

[6]

O. Kavian, M. Leguèbe, C. Poignard and L. Weynans, "Classical'' electropermeabilization modeling at the cell scale,, Journal of Mathematical Biology, 68 (2014), 235.  doi: 10.1007/s00285-012-0629-3.  Google Scholar

[7]

M. Leguèbe, Modélisation de L'électroperméabilisation à L'échelle Cellulaire (French),, PhD thesis, (2014).   Google Scholar

[8]

M. Leguèbe, C. Poignard and L. Weynans, A Second-Order Cartesian Method for the Simulation of Electropermeabilization Cell Models,, Technical Report RR-8302, (2013).   Google Scholar

[9]

M. Leguèbe, A. Silve, L. M. Mir and C. Poignard, Conducting and permeable states of cell membrane submitted to high voltage pulses: Mathematical and numerical studies validated by the experiments,, Journal of Theoretical Biology, 360 (2014), 83.   Google Scholar

[10]

J. Li and H. Lin, The current-voltage relation for electropores with conductivity gradients,, Biomicrofluidics, 4 (2010).  doi: 10.1063/1.3324847.  Google Scholar

[11]

L. M. Mir, Electrogenetransfer in clinical applications,, Wiley-VCH Verlag GmbH & Co. KGaA, (2006), 219.   Google Scholar

[12]

O. M. Nesin, O. N. Pakhomova, S. Xiao and A. G. Pakhomov, Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses,, Biochimica et Biophysica Acta - Biomembranes, 1808 (2011), 792.  doi: 10.1016/j.bbamem.2010.12.012.  Google Scholar

[13]

J. Neu and W. Krassowska, Asymptotic model of electroporation,, Physical Review E, 53 (1999), 3471.  doi: 10.1103/PhysRevE.59.3471.  Google Scholar

[14]

V. Péron, Modélisation Mathématique de Phénomènes Électromagnétiques dans des Matériaux à Fort Contraste (French),, PhD thesis, (2009).   Google Scholar

[15]

B. Poddevin, S. Orlowski, J. Belehradek and L. M. Mir, Very high cytotoxicity of bleomycin introduced into the cytosol of cells in culture,, Biochemical Pharmacology, 42 (1991).  doi: 10.1016/0006-2952(91)90394-K.  Google Scholar

[16]

C. Poignard, Approximate transmission conditions through a weakly oscillating thin layer,, Mathematical Methods in the Applied Sciences, 32 (2009), 435.  doi: 10.1002/mma.1045.  Google Scholar

[17]

G. Pucihar, J. Krmelj, M. Reberšek, T. B. Napotnik and D. Miklavčič, Equivalent pulse parameters for electroporation,, IEEE Trans Biomed Eng, 58 (2011), 3279.  doi: 10.1109/TBME.2011.2167232.  Google Scholar

[18]

J. Saranen and G. Vainikko, Periodic Integral and Pseudodifferential Equations with Numerical Approximation,, Springer Monographs in Mathematics, (2002).  doi: 10.1007/978-3-662-04796-5.  Google Scholar

[19]

S. Šatkauskas, F. M. André, M. F. Bureau, D. Scherman, D. Miklavčič and L. M. Mir, Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer,, Human Gene Therapy, 16 (2005), 1194.   Google Scholar

[20]

A. Silve, A. Ivorra and L. M. Mir, Detection of permeabilisation obtained by micropulses and nanopulses by means of bioimpedance of biological tissues,, in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), (2011), 3164.   Google Scholar

show all references

References:
[1]

L. Calmels, B. Al-Sakere, J. P. Ruaud, A. Leroy-Willig and L. M. Mir, In vivo MRI follow-up of murine tumors treated by electrochemotherapy and other electroporation-based treatments,, Technology in Cancer Research and Treatment, 11 (2012), 561.  doi: 10.7785/tcrt.2012.500270.  Google Scholar

[2]

M. Cisternino and L. Weynans, A parallel second order cartesian method for elliptic interface problems,, Communications in Computational Physics, 12 (2012), 1562.   Google Scholar

[3]

K. DeBruin and W. Krassowska, Modelling electroporation in a single cell. I. Effects of field strength and rest potential,, Biophysical Journal, 77 (1999), 1213.  doi: 10.1016/S0006-3495(99)76973-0.  Google Scholar

[4]

A. Gothelf, L. M. Mir and J. Gehl, Electrochemotherapy: Results of cancer treatment using enhanced delivery of bleomycin by electroporation,, Cancer Treatment Reviews, 29 (2003), 371.  doi: 10.1016/S0305-7372(03)00073-2.  Google Scholar

[5]

R. P. Joshi, Q. Hu and K. H. Schoenbach, Dynamical modeling of cellular response to short-duration, high-intensity electric fields,, Dielectrics and Electrical Insulation, 10 (2003), 778.  doi: 10.1109/TDEI.2003.1237327.  Google Scholar

[6]

O. Kavian, M. Leguèbe, C. Poignard and L. Weynans, "Classical'' electropermeabilization modeling at the cell scale,, Journal of Mathematical Biology, 68 (2014), 235.  doi: 10.1007/s00285-012-0629-3.  Google Scholar

[7]

M. Leguèbe, Modélisation de L'électroperméabilisation à L'échelle Cellulaire (French),, PhD thesis, (2014).   Google Scholar

[8]

M. Leguèbe, C. Poignard and L. Weynans, A Second-Order Cartesian Method for the Simulation of Electropermeabilization Cell Models,, Technical Report RR-8302, (2013).   Google Scholar

[9]

M. Leguèbe, A. Silve, L. M. Mir and C. Poignard, Conducting and permeable states of cell membrane submitted to high voltage pulses: Mathematical and numerical studies validated by the experiments,, Journal of Theoretical Biology, 360 (2014), 83.   Google Scholar

[10]

J. Li and H. Lin, The current-voltage relation for electropores with conductivity gradients,, Biomicrofluidics, 4 (2010).  doi: 10.1063/1.3324847.  Google Scholar

[11]

L. M. Mir, Electrogenetransfer in clinical applications,, Wiley-VCH Verlag GmbH & Co. KGaA, (2006), 219.   Google Scholar

[12]

O. M. Nesin, O. N. Pakhomova, S. Xiao and A. G. Pakhomov, Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses,, Biochimica et Biophysica Acta - Biomembranes, 1808 (2011), 792.  doi: 10.1016/j.bbamem.2010.12.012.  Google Scholar

[13]

J. Neu and W. Krassowska, Asymptotic model of electroporation,, Physical Review E, 53 (1999), 3471.  doi: 10.1103/PhysRevE.59.3471.  Google Scholar

[14]

V. Péron, Modélisation Mathématique de Phénomènes Électromagnétiques dans des Matériaux à Fort Contraste (French),, PhD thesis, (2009).   Google Scholar

[15]

B. Poddevin, S. Orlowski, J. Belehradek and L. M. Mir, Very high cytotoxicity of bleomycin introduced into the cytosol of cells in culture,, Biochemical Pharmacology, 42 (1991).  doi: 10.1016/0006-2952(91)90394-K.  Google Scholar

[16]

C. Poignard, Approximate transmission conditions through a weakly oscillating thin layer,, Mathematical Methods in the Applied Sciences, 32 (2009), 435.  doi: 10.1002/mma.1045.  Google Scholar

[17]

G. Pucihar, J. Krmelj, M. Reberšek, T. B. Napotnik and D. Miklavčič, Equivalent pulse parameters for electroporation,, IEEE Trans Biomed Eng, 58 (2011), 3279.  doi: 10.1109/TBME.2011.2167232.  Google Scholar

[18]

J. Saranen and G. Vainikko, Periodic Integral and Pseudodifferential Equations with Numerical Approximation,, Springer Monographs in Mathematics, (2002).  doi: 10.1007/978-3-662-04796-5.  Google Scholar

[19]

S. Šatkauskas, F. M. André, M. F. Bureau, D. Scherman, D. Miklavčič and L. M. Mir, Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer,, Human Gene Therapy, 16 (2005), 1194.   Google Scholar

[20]

A. Silve, A. Ivorra and L. M. Mir, Detection of permeabilisation obtained by micropulses and nanopulses by means of bioimpedance of biological tissues,, in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), (2011), 3164.   Google Scholar

[1]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[2]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[3]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[4]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[5]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[6]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[7]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[8]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[9]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291

[10]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[11]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[12]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[13]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[14]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[15]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[16]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[17]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[18]

Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261

[19]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[20]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]