• Previous Article
    Threshold dynamics of a periodic SIR model with delay in an infected compartment
  • MBE Home
  • This Issue
  • Next Article
    Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection
2015, 12(3): 537-554. doi: 10.3934/mbe.2015.12.537

Cell scale modeling of electropermeabilization by periodic pulses

1. 

Inria Bordeaux Sud-Ouest, 200, Rue de la Veille Tour, 33405 Talence, France

Received  November 2013 Revised  January 2015 Published  January 2015

In this paper, we focus on the behaviour of periodic solutions to a cell-scale electropermeabilization model previously proposed by Kavian et al. [6]. Since clinical permeabilization protocols mostly submit cancer cells to trains of periodic pulses, we investigate on parameters that modify significantly the resulting permeabilization. Theoretical results of existence and uniqueness of periodic solutions are presented, for two different models of membrane electric conductivity. Numerical simulations were performed to corroborate these results and illustrate the asymptotic convergence to periodic solutions, as well as the dependency on biological parameters such as the cell size and the extracellular conductivity.
Citation: Michael Leguèbe. Cell scale modeling of electropermeabilization by periodic pulses. Mathematical Biosciences & Engineering, 2015, 12 (3) : 537-554. doi: 10.3934/mbe.2015.12.537
References:
[1]

L. Calmels, B. Al-Sakere, J. P. Ruaud, A. Leroy-Willig and L. M. Mir, In vivo MRI follow-up of murine tumors treated by electrochemotherapy and other electroporation-based treatments,, Technology in Cancer Research and Treatment, 11 (2012), 561. doi: 10.7785/tcrt.2012.500270. Google Scholar

[2]

M. Cisternino and L. Weynans, A parallel second order cartesian method for elliptic interface problems,, Communications in Computational Physics, 12 (2012), 1562. Google Scholar

[3]

K. DeBruin and W. Krassowska, Modelling electroporation in a single cell. I. Effects of field strength and rest potential,, Biophysical Journal, 77 (1999), 1213. doi: 10.1016/S0006-3495(99)76973-0. Google Scholar

[4]

A. Gothelf, L. M. Mir and J. Gehl, Electrochemotherapy: Results of cancer treatment using enhanced delivery of bleomycin by electroporation,, Cancer Treatment Reviews, 29 (2003), 371. doi: 10.1016/S0305-7372(03)00073-2. Google Scholar

[5]

R. P. Joshi, Q. Hu and K. H. Schoenbach, Dynamical modeling of cellular response to short-duration, high-intensity electric fields,, Dielectrics and Electrical Insulation, 10 (2003), 778. doi: 10.1109/TDEI.2003.1237327. Google Scholar

[6]

O. Kavian, M. Leguèbe, C. Poignard and L. Weynans, "Classical'' electropermeabilization modeling at the cell scale,, Journal of Mathematical Biology, 68 (2014), 235. doi: 10.1007/s00285-012-0629-3. Google Scholar

[7]

M. Leguèbe, Modélisation de L'électroperméabilisation à L'échelle Cellulaire (French),, PhD thesis, (2014). Google Scholar

[8]

M. Leguèbe, C. Poignard and L. Weynans, A Second-Order Cartesian Method for the Simulation of Electropermeabilization Cell Models,, Technical Report RR-8302, (2013). Google Scholar

[9]

M. Leguèbe, A. Silve, L. M. Mir and C. Poignard, Conducting and permeable states of cell membrane submitted to high voltage pulses: Mathematical and numerical studies validated by the experiments,, Journal of Theoretical Biology, 360 (2014), 83. Google Scholar

[10]

J. Li and H. Lin, The current-voltage relation for electropores with conductivity gradients,, Biomicrofluidics, 4 (2010). doi: 10.1063/1.3324847. Google Scholar

[11]

L. M. Mir, Electrogenetransfer in clinical applications,, Wiley-VCH Verlag GmbH & Co. KGaA, (2006), 219. Google Scholar

[12]

O. M. Nesin, O. N. Pakhomova, S. Xiao and A. G. Pakhomov, Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses,, Biochimica et Biophysica Acta - Biomembranes, 1808 (2011), 792. doi: 10.1016/j.bbamem.2010.12.012. Google Scholar

[13]

J. Neu and W. Krassowska, Asymptotic model of electroporation,, Physical Review E, 53 (1999), 3471. doi: 10.1103/PhysRevE.59.3471. Google Scholar

[14]

V. Péron, Modélisation Mathématique de Phénomènes Électromagnétiques dans des Matériaux à Fort Contraste (French),, PhD thesis, (2009). Google Scholar

[15]

B. Poddevin, S. Orlowski, J. Belehradek and L. M. Mir, Very high cytotoxicity of bleomycin introduced into the cytosol of cells in culture,, Biochemical Pharmacology, 42 (1991). doi: 10.1016/0006-2952(91)90394-K. Google Scholar

[16]

C. Poignard, Approximate transmission conditions through a weakly oscillating thin layer,, Mathematical Methods in the Applied Sciences, 32 (2009), 435. doi: 10.1002/mma.1045. Google Scholar

[17]

G. Pucihar, J. Krmelj, M. Reberšek, T. B. Napotnik and D. Miklavčič, Equivalent pulse parameters for electroporation,, IEEE Trans Biomed Eng, 58 (2011), 3279. doi: 10.1109/TBME.2011.2167232. Google Scholar

[18]

J. Saranen and G. Vainikko, Periodic Integral and Pseudodifferential Equations with Numerical Approximation,, Springer Monographs in Mathematics, (2002). doi: 10.1007/978-3-662-04796-5. Google Scholar

[19]

S. Šatkauskas, F. M. André, M. F. Bureau, D. Scherman, D. Miklavčič and L. M. Mir, Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer,, Human Gene Therapy, 16 (2005), 1194. Google Scholar

[20]

A. Silve, A. Ivorra and L. M. Mir, Detection of permeabilisation obtained by micropulses and nanopulses by means of bioimpedance of biological tissues,, in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), (2011), 3164. Google Scholar

show all references

References:
[1]

L. Calmels, B. Al-Sakere, J. P. Ruaud, A. Leroy-Willig and L. M. Mir, In vivo MRI follow-up of murine tumors treated by electrochemotherapy and other electroporation-based treatments,, Technology in Cancer Research and Treatment, 11 (2012), 561. doi: 10.7785/tcrt.2012.500270. Google Scholar

[2]

M. Cisternino and L. Weynans, A parallel second order cartesian method for elliptic interface problems,, Communications in Computational Physics, 12 (2012), 1562. Google Scholar

[3]

K. DeBruin and W. Krassowska, Modelling electroporation in a single cell. I. Effects of field strength and rest potential,, Biophysical Journal, 77 (1999), 1213. doi: 10.1016/S0006-3495(99)76973-0. Google Scholar

[4]

A. Gothelf, L. M. Mir and J. Gehl, Electrochemotherapy: Results of cancer treatment using enhanced delivery of bleomycin by electroporation,, Cancer Treatment Reviews, 29 (2003), 371. doi: 10.1016/S0305-7372(03)00073-2. Google Scholar

[5]

R. P. Joshi, Q. Hu and K. H. Schoenbach, Dynamical modeling of cellular response to short-duration, high-intensity electric fields,, Dielectrics and Electrical Insulation, 10 (2003), 778. doi: 10.1109/TDEI.2003.1237327. Google Scholar

[6]

O. Kavian, M. Leguèbe, C. Poignard and L. Weynans, "Classical'' electropermeabilization modeling at the cell scale,, Journal of Mathematical Biology, 68 (2014), 235. doi: 10.1007/s00285-012-0629-3. Google Scholar

[7]

M. Leguèbe, Modélisation de L'électroperméabilisation à L'échelle Cellulaire (French),, PhD thesis, (2014). Google Scholar

[8]

M. Leguèbe, C. Poignard and L. Weynans, A Second-Order Cartesian Method for the Simulation of Electropermeabilization Cell Models,, Technical Report RR-8302, (2013). Google Scholar

[9]

M. Leguèbe, A. Silve, L. M. Mir and C. Poignard, Conducting and permeable states of cell membrane submitted to high voltage pulses: Mathematical and numerical studies validated by the experiments,, Journal of Theoretical Biology, 360 (2014), 83. Google Scholar

[10]

J. Li and H. Lin, The current-voltage relation for electropores with conductivity gradients,, Biomicrofluidics, 4 (2010). doi: 10.1063/1.3324847. Google Scholar

[11]

L. M. Mir, Electrogenetransfer in clinical applications,, Wiley-VCH Verlag GmbH & Co. KGaA, (2006), 219. Google Scholar

[12]

O. M. Nesin, O. N. Pakhomova, S. Xiao and A. G. Pakhomov, Manipulation of cell volume and membrane pore comparison following single cell permeabilization with 60- and 600-ns electric pulses,, Biochimica et Biophysica Acta - Biomembranes, 1808 (2011), 792. doi: 10.1016/j.bbamem.2010.12.012. Google Scholar

[13]

J. Neu and W. Krassowska, Asymptotic model of electroporation,, Physical Review E, 53 (1999), 3471. doi: 10.1103/PhysRevE.59.3471. Google Scholar

[14]

V. Péron, Modélisation Mathématique de Phénomènes Électromagnétiques dans des Matériaux à Fort Contraste (French),, PhD thesis, (2009). Google Scholar

[15]

B. Poddevin, S. Orlowski, J. Belehradek and L. M. Mir, Very high cytotoxicity of bleomycin introduced into the cytosol of cells in culture,, Biochemical Pharmacology, 42 (1991). doi: 10.1016/0006-2952(91)90394-K. Google Scholar

[16]

C. Poignard, Approximate transmission conditions through a weakly oscillating thin layer,, Mathematical Methods in the Applied Sciences, 32 (2009), 435. doi: 10.1002/mma.1045. Google Scholar

[17]

G. Pucihar, J. Krmelj, M. Reberšek, T. B. Napotnik and D. Miklavčič, Equivalent pulse parameters for electroporation,, IEEE Trans Biomed Eng, 58 (2011), 3279. doi: 10.1109/TBME.2011.2167232. Google Scholar

[18]

J. Saranen and G. Vainikko, Periodic Integral and Pseudodifferential Equations with Numerical Approximation,, Springer Monographs in Mathematics, (2002). doi: 10.1007/978-3-662-04796-5. Google Scholar

[19]

S. Šatkauskas, F. M. André, M. F. Bureau, D. Scherman, D. Miklavčič and L. M. Mir, Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer,, Human Gene Therapy, 16 (2005), 1194. Google Scholar

[20]

A. Silve, A. Ivorra and L. M. Mir, Detection of permeabilisation obtained by micropulses and nanopulses by means of bioimpedance of biological tissues,, in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), (2011), 3164. Google Scholar

[1]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[2]

Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems & Imaging, 2018, 12 (1) : 91-123. doi: 10.3934/ipi.2018004

[3]

Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841

[4]

Christoph Walker. Age-dependent equations with non-linear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 691-712. doi: 10.3934/dcds.2010.26.691

[5]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053

[6]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

[7]

David Gómez-Ullate, Niky Kamran, Robert Milson. Structure theorems for linear and non-linear differential operators admitting invariant polynomial subspaces. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 85-106. doi: 10.3934/dcds.2007.18.85

[8]

Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481

[9]

Kurt Falk, Marc Kesseböhmer, Tobias Henrik Oertel-Jäger, Jens D. M. Rademacher, Tony Samuel. Preface: Diffusion on fractals and non-linear dynamics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : ⅰ-ⅳ. doi: 10.3934/dcdss.201702i

[10]

Dmitry Dolgopyat. Bouncing balls in non-linear potentials. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 165-182. doi: 10.3934/dcds.2008.22.165

[11]

Dorin Ervin Dutkay and Palle E. T. Jorgensen. Wavelet constructions in non-linear dynamics. Electronic Research Announcements, 2005, 11: 21-33.

[12]

Armin Lechleiter. Explicit characterization of the support of non-linear inclusions. Inverse Problems & Imaging, 2011, 5 (3) : 675-694. doi: 10.3934/ipi.2011.5.675

[13]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[14]

Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239

[15]

Sanjay Khattri. Another note on some quadrature based three-step iterative methods for non-linear equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 549-555. doi: 10.3934/naco.2013.3.549

[16]

Rajesh Kumar, Jitendra Kumar, Gerald Warnecke. Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations. Kinetic & Related Models, 2014, 7 (4) : 713-737. doi: 10.3934/krm.2014.7.713

[17]

Radhia Ghanmi, Tarek Saanouni. Well-posedness issues for some critical coupled non-linear Klein-Gordon equations. Communications on Pure & Applied Analysis, 2019, 18 (2) : 603-623. doi: 10.3934/cpaa.2019030

[18]

Michela Procesi. Quasi-periodic solutions for completely resonant non-linear wave equations in 1D and 2D. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 541-552. doi: 10.3934/dcds.2005.13.541

[19]

G. A. Athanassoulis, K. A. Belibassakis. New evolution equations for non-linear water waves in general bathymetry with application to steady travelling solutions in constant, but arbitrary, depth. Conference Publications, 2007, 2007 (Special) : 75-84. doi: 10.3934/proc.2007.2007.75

[20]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]