\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Threshold dynamics of a periodic SIR model with delay in an infected compartment

Abstract Related Papers Cited by
  • Threshold dynamics of epidemic models in periodic environments attract more attention. But there are few papers which are concerned with the case where the infected compartments satisfy a delay differential equation. For this reason, we investigate the dynamical behavior of a periodic SIR model with delay in an infected compartment. We first introduce the basic reproduction number $\mathcal {R}_0$ for the model, and then show that it can act as a threshold parameter that determines the uniform persistence or extinction of the disease. Numerical simulations are performed to confirm the analytical results and illustrate the dependence of $\mathcal {R}_0$ on the seasonality and the latent period.
    Mathematics Subject Classification: Primary: 34K13, 92D30; Secondary: 37N25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436.doi: 10.1007/s00285-006-0015-0.

    [2]

    Z. Bai and Y. Zhou, Threshold dynamics of a delayed SEIRS model with pulse vaccination and general nonlinear incidence, 2014, preprint.

    [3]

    N. Bacaër and E. Ait Dads, Genealogy with seasonality, the basic reproduction number, and the influenza pandemic, J. Math. Biol., 62 (2011), 741-762.doi: 10.1007/s00285-010-0354-8.

    [4]

    N. Bacaër and R. Ouifki, Growth rate and basic reproduction number for population models with a simple periodic factor, Math. Biosci., 210 (2007), 647-658.doi: 10.1016/j.mbs.2007.07.005.

    [5]

    Z. Bai and Y. Zhou, Existence of multiple periodic solutions for an SIR model with seasonality, Nonlinear Anal., 74 (2011), 3548-3555.doi: 10.1016/j.na.2011.03.008.

    [6]

    K. L. Cooke, Stability analysis for a vector disease model, Rocky Mountain J. Math., 9 (1979), 31-42.doi: 10.1216/RMJ-1979-9-1-31.

    [7]

    N. C. Grassly and C. Fraser, Seasonal infectious disease epidemiology, Proc. R. Soc. B., 273 (2006), 2541-2550.doi: 10.1098/rspb.2006.3604.

    [8]

    G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192-1207.doi: 10.1007/s11538-009-9487-6.

    [9]

    J. Lou, Y. Lou and J. Wu, Threshold virus dynamics with impulsive antiretroviral drug effects, J. Math. Biol., 65 (2012), 623-652.doi: 10.1007/s00285-011-0474-9.

    [10]

    Y. Lou and X.-Q. Zhao, A climate-based malaria transmission model with structured vector population, SIAM J. Appl. Math., 70 (2010), 2023-2044.doi: 10.1137/080744438.

    [11]

    C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence, Nonlinear Anal. RWA, 11 (2010), 3106-3109.doi: 10.1016/j.nonrwa.2009.11.005.

    [12]

    C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete, Nonlinear Anal. RWA, 11 (2010), 55-59.doi: 10.1016/j.nonrwa.2008.10.014.

    [13]

    W. Ma, M. Song and Y. Takeuchi, Global stability of an SIR epidemic model with time delay, Appl. Math. Lett., 17 (2004), 1141-1145.doi: 10.1016/j.aml.2003.11.005.

    [14]

    P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.doi: 10.1137/S0036141003439173.

    [15]

    Y. Nakata and T. Kuniya, Global dynamics of a class of SEIRS epidemic models in a periodic environment, J. Math. Anal. Appl., 363 (2010), 230-237.doi: 10.1016/j.jmaa.2009.08.027.

    [16]

    C. Rebelo, A. Margheri and N. Bacaër, Persistence in seasonally forced epidemiological models, J. Math. Biol., 64 (2012), 933-949.doi: 10.1007/s00285-011-0440-6.

    [17]

    C. Rebelo, A. Margheri and N. Bacaër, Persistence in some periodic epidemic models with infection age or constant periods of infection, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1155-1170.doi: 10.3934/dcdsb.2014.19.1155.

    [18]

    H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995.

    [19]

    H. R. Thieme, Renewal theorems for linear periodic Volterra integral equations, J. Integral Equations, 7 (1984), 253-277.

    [20]

    H. R. Thieme, Convergence results and Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.doi: 10.1007/BF00173267.

    [21]

    Y. Tang, D. Huang, S. Ruan and W. Zhang, Coexistence of limit cycles and homoclinic loops in a SIRS model wiht a nonlinear incidence rate, SIAM J. Appl. Math., 69 (2008), 621-639.doi: 10.1137/070700966.

    [22]

    W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equat., 20 (2008), 699-717.doi: 10.1007/s10884-008-9111-8.

    [23]

    R. Xu and Z. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal. RWA, 10 (2009), 3175-3189.doi: 10.1016/j.nonrwa.2008.10.013.

    [24]

    D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-429.doi: 10.1016/j.mbs.2006.09.025.

    [25]

    X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003.doi: 10.1007/978-0-387-21761-1.

    [26]

    F. Zhang and X.-Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516.doi: 10.1016/j.jmaa.2006.01.085.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(114) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return