• Previous Article
    Optimal information dissemination strategy to promote preventive behaviors in multilayer epidemic networks
  • MBE Home
  • This Issue
  • Next Article
    Network-level reproduction number and extinction threshold for vector-borne diseases
2015, 12(3): 585-607. doi: 10.3934/mbe.2015.12.585

An aggregate stochastic model incorporating individual dynamics for predation movements of anelosimus studiosus

1. 

Department of Mathematics & Statistics, East Tennessee State University, Johnson City, TN, 37614, United States, United States, United States

2. 

Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, United States, United States, United States

Received  July 2014 Revised  December 2014 Published  February 2015

In this paper, we discuss methods for developing a stochastic model which incorporates behavior differences in the predation movements of Anelosimus studiosus (a subsocial spider). Stochastic models for animal movement and, in particular, spider predation movement have been developed previously; however, this paper focuses on the development and implementation of the necessary mathematical and statistical methods required to expand such a model in order to capture a variety of distinct behaviors. A least squares optimization algorithm is used for parameter estimation to fit a single stochastic model to an individual spider during predation resulting in unique parameter values for each spider. Similarities and variations between parameter values across the spiders are analyzed and used to estimate probability distributions for the variable parameter values. An aggregate stochastic model is then created which incorporates the individual dynamics. The comparison between the optimal individual models to the aggregate model indicate the methodology and algorithm developed in this paper are appropriate for simulating a range of individualistic behaviors.
Citation: Alex John Quijano, Michele L. Joyner, Edith Seier, Nathaniel Hancock, Michael Largent, Thomas C. Jones. An aggregate stochastic model incorporating individual dynamics for predation movements of anelosimus studiosus. Mathematical Biosciences & Engineering, 2015, 12 (3) : 585-607. doi: 10.3934/mbe.2015.12.585
References:
[1]

H. Banks, S. Hu and W. Clayton, Modeling and Inverse Problems in the Presence of Uncertainty,, CRC Press, (2014).   Google Scholar

[2]

D. R. Billinger, H. K. Preisler, A. A. Ager, J. G. Kie and B. S. Stewart, Modelling Movements of Free-Ranging Animals,, Technical Report 610, (2001).   Google Scholar

[3]

M. Davidian and D. M. Giltinan, Nonlinear models for repeated measurement data: An overview and update,, Journal of Agricultural, 8 (2003), 387.  doi: 10.1198/1085711032697.  Google Scholar

[4]

B. Douglas, Tracker: Video Analysis and Modeling Tool,, Tracker version 4.80, (2013).   Google Scholar

[5]

R. F. Foelix, The Biology of Spiders,, 3rd edition, (2011).   Google Scholar

[6]

L. Grinstead, J. N. Pruitt, V. Settepani and T. Bilde, Individual personalities shape task differentiation in a social spider,, Proceedings of the Royal Society B, 280 (2013).  doi: 10.1098/rspb.2013.1407.  Google Scholar

[7]

D. Halliday and R. Resnick, Fundamentals of Physics,, John Wiley & Sons, (1988).   Google Scholar

[8]

P. Hoel and R. Jessen, Basic Statistics for Business and Economics,, John Wiley & Sons, (1971).   Google Scholar

[9]

T. C. Jones and P. G. Parker, Costs and benefits of foraging associated with delayed dispersal in the spider anelosimus studiosus (araneae: Theridiidae),, Journal of Arachnology, 28 (2000), 61.   Google Scholar

[10]

T. C. Jones and P. G. Parker, Delayed dispersal benefits both mother and offspring in the cooperative spider anelosimus studiosus (araneae: Theridiidae),, Behavioral Ecology, 13 (2002), 142.  doi: 10.1093/beheco/13.1.142.  Google Scholar

[11]

M. Joyner, C. Ross, C. Watts and T. Jones, A stochastic simulation model for anelosimus studiosus during prey capture: A case study for determination of optimal spacing,, Mathematical Biosciences and Engineering, 11 (2014), 1411.  doi: 10.3934/mbe.2014.11.1411.  Google Scholar

[12]

R. Larson and D. Falvo, Elementary Linear Algebra,, 6th edition, (2010).   Google Scholar

[13]

S. A. Naftilan, Transmission of vibrations in funnel and sheet spider webs,, Biological Macromolecules, 24 (1999), 289.  doi: 10.1016/S0141-8130(98)00092-0.  Google Scholar

[14]

J. N. Pruitt, S. E. Riechert and T. C. Jones, Behavioural syndromes and their fitness consequences in a socially polymorphic spider, anelosimus studiosus,, Animal Behaviour, 76 (2008), 871.  doi: 10.1016/j.anbehav.2008.05.009.  Google Scholar

[15]

R Core Team, R: A Language and Environment for Statistical Computing,, R Foundation for Statistical Computing, (2013).   Google Scholar

[16]

P. E. Smouse, S. Focardi, P. R. Moorcroft, J. G. Kie, J. D. Forester and J. M. Morales, Stochastic modelling of animal movement,, Phi.l Trans.R. Soc. B., 365 (2010), 2201.  doi: 10.1098/rstb.2010.0078.  Google Scholar

show all references

References:
[1]

H. Banks, S. Hu and W. Clayton, Modeling and Inverse Problems in the Presence of Uncertainty,, CRC Press, (2014).   Google Scholar

[2]

D. R. Billinger, H. K. Preisler, A. A. Ager, J. G. Kie and B. S. Stewart, Modelling Movements of Free-Ranging Animals,, Technical Report 610, (2001).   Google Scholar

[3]

M. Davidian and D. M. Giltinan, Nonlinear models for repeated measurement data: An overview and update,, Journal of Agricultural, 8 (2003), 387.  doi: 10.1198/1085711032697.  Google Scholar

[4]

B. Douglas, Tracker: Video Analysis and Modeling Tool,, Tracker version 4.80, (2013).   Google Scholar

[5]

R. F. Foelix, The Biology of Spiders,, 3rd edition, (2011).   Google Scholar

[6]

L. Grinstead, J. N. Pruitt, V. Settepani and T. Bilde, Individual personalities shape task differentiation in a social spider,, Proceedings of the Royal Society B, 280 (2013).  doi: 10.1098/rspb.2013.1407.  Google Scholar

[7]

D. Halliday and R. Resnick, Fundamentals of Physics,, John Wiley & Sons, (1988).   Google Scholar

[8]

P. Hoel and R. Jessen, Basic Statistics for Business and Economics,, John Wiley & Sons, (1971).   Google Scholar

[9]

T. C. Jones and P. G. Parker, Costs and benefits of foraging associated with delayed dispersal in the spider anelosimus studiosus (araneae: Theridiidae),, Journal of Arachnology, 28 (2000), 61.   Google Scholar

[10]

T. C. Jones and P. G. Parker, Delayed dispersal benefits both mother and offspring in the cooperative spider anelosimus studiosus (araneae: Theridiidae),, Behavioral Ecology, 13 (2002), 142.  doi: 10.1093/beheco/13.1.142.  Google Scholar

[11]

M. Joyner, C. Ross, C. Watts and T. Jones, A stochastic simulation model for anelosimus studiosus during prey capture: A case study for determination of optimal spacing,, Mathematical Biosciences and Engineering, 11 (2014), 1411.  doi: 10.3934/mbe.2014.11.1411.  Google Scholar

[12]

R. Larson and D. Falvo, Elementary Linear Algebra,, 6th edition, (2010).   Google Scholar

[13]

S. A. Naftilan, Transmission of vibrations in funnel and sheet spider webs,, Biological Macromolecules, 24 (1999), 289.  doi: 10.1016/S0141-8130(98)00092-0.  Google Scholar

[14]

J. N. Pruitt, S. E. Riechert and T. C. Jones, Behavioural syndromes and their fitness consequences in a socially polymorphic spider, anelosimus studiosus,, Animal Behaviour, 76 (2008), 871.  doi: 10.1016/j.anbehav.2008.05.009.  Google Scholar

[15]

R Core Team, R: A Language and Environment for Statistical Computing,, R Foundation for Statistical Computing, (2013).   Google Scholar

[16]

P. E. Smouse, S. Focardi, P. R. Moorcroft, J. G. Kie, J. D. Forester and J. M. Morales, Stochastic modelling of animal movement,, Phi.l Trans.R. Soc. B., 365 (2010), 2201.  doi: 10.1098/rstb.2010.0078.  Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[4]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[5]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[6]

Stefan Ruschel, Serhiy Yanchuk. The Spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[7]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[8]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[9]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[10]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[11]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[12]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[13]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[14]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[15]

Andrea Braides, Antonio Tribuzio. Perturbed minimizing movements of families of functionals. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 373-393. doi: 10.3934/dcdss.2020324

[16]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[17]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[18]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[19]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[20]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (0)

[Back to Top]