• Previous Article
    Optimal information dissemination strategy to promote preventive behaviors in multilayer epidemic networks
  • MBE Home
  • This Issue
  • Next Article
    Network-level reproduction number and extinction threshold for vector-borne diseases
2015, 12(3): 585-607. doi: 10.3934/mbe.2015.12.585

An aggregate stochastic model incorporating individual dynamics for predation movements of anelosimus studiosus

1. 

Department of Mathematics & Statistics, East Tennessee State University, Johnson City, TN, 37614, United States, United States, United States

2. 

Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, United States, United States, United States

Received  July 2014 Revised  December 2014 Published  February 2015

In this paper, we discuss methods for developing a stochastic model which incorporates behavior differences in the predation movements of Anelosimus studiosus (a subsocial spider). Stochastic models for animal movement and, in particular, spider predation movement have been developed previously; however, this paper focuses on the development and implementation of the necessary mathematical and statistical methods required to expand such a model in order to capture a variety of distinct behaviors. A least squares optimization algorithm is used for parameter estimation to fit a single stochastic model to an individual spider during predation resulting in unique parameter values for each spider. Similarities and variations between parameter values across the spiders are analyzed and used to estimate probability distributions for the variable parameter values. An aggregate stochastic model is then created which incorporates the individual dynamics. The comparison between the optimal individual models to the aggregate model indicate the methodology and algorithm developed in this paper are appropriate for simulating a range of individualistic behaviors.
Citation: Alex John Quijano, Michele L. Joyner, Edith Seier, Nathaniel Hancock, Michael Largent, Thomas C. Jones. An aggregate stochastic model incorporating individual dynamics for predation movements of anelosimus studiosus. Mathematical Biosciences & Engineering, 2015, 12 (3) : 585-607. doi: 10.3934/mbe.2015.12.585
References:
[1]

H. Banks, S. Hu and W. Clayton, Modeling and Inverse Problems in the Presence of Uncertainty, CRC Press, Boca Raton, 2014.

[2]

D. R. Billinger, H. K. Preisler, A. A. Ager, J. G. Kie and B. S. Stewart, Modelling Movements of Free-Ranging Animals, Technical Report 610, Department of Statistics, University of California, Berkeley, 2001.

[3]

M. Davidian and D. M. Giltinan, Nonlinear models for repeated measurement data: An overview and update, Journal of Agricultural, Biological, and Environmental Statistics, 8 (2003), 387-419. doi: 10.1198/1085711032697.

[4]

B. Douglas, Tracker: Video Analysis and Modeling Tool, Tracker version 4.80, Copyright(c), 2013, URL http://www.cabrillo.edu/~dbrown/tracker.

[5]

R. F. Foelix, The Biology of Spiders, 3rd edition, Oxford University Press, 2011.

[6]

L. Grinstead, J. N. Pruitt, V. Settepani and T. Bilde, Individual personalities shape task differentiation in a social spider, Proceedings of the Royal Society B, 280 (2013). doi: 10.1098/rspb.2013.1407.

[7]

D. Halliday and R. Resnick, Fundamentals of Physics, John Wiley & Sons, Inc., New York, 1988.

[8]

P. Hoel and R. Jessen, Basic Statistics for Business and Economics, John Wiley & Sons, Inc., New York, 1971.

[9]

T. C. Jones and P. G. Parker, Costs and benefits of foraging associated with delayed dispersal in the spider anelosimus studiosus (araneae: Theridiidae), Journal of Arachnology, 28 (2000), 61-69.

[10]

T. C. Jones and P. G. Parker, Delayed dispersal benefits both mother and offspring in the cooperative spider anelosimus studiosus (araneae: Theridiidae), Behavioral Ecology, 13 (2002), 142-148. doi: 10.1093/beheco/13.1.142.

[11]

M. Joyner, C. Ross, C. Watts and T. Jones, A stochastic simulation model for anelosimus studiosus during prey capture: A case study for determination of optimal spacing, Mathematical Biosciences and Engineering, 11 (2014), 1411-1429. doi: 10.3934/mbe.2014.11.1411.

[12]

R. Larson and D. Falvo, Elementary Linear Algebra, 6th edition, Brooks/Cole, Belmont CA, 2010.

[13]

S. A. Naftilan, Transmission of vibrations in funnel and sheet spider webs, Biological Macromolecules, 24 (1999), 289-293. doi: 10.1016/S0141-8130(98)00092-0.

[14]

J. N. Pruitt, S. E. Riechert and T. C. Jones, Behavioural syndromes and their fitness consequences in a socially polymorphic spider, anelosimus studiosus, Animal Behaviour, 76 (2008), 871-879. doi: 10.1016/j.anbehav.2008.05.009.

[15]

R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2013, URL http://www.R-project.org/.

[16]

P. E. Smouse, S. Focardi, P. R. Moorcroft, J. G. Kie, J. D. Forester and J. M. Morales, Stochastic modelling of animal movement, Phi.l Trans.R. Soc. B., 365 (2010), 2201-2211. doi: 10.1098/rstb.2010.0078.

show all references

References:
[1]

H. Banks, S. Hu and W. Clayton, Modeling and Inverse Problems in the Presence of Uncertainty, CRC Press, Boca Raton, 2014.

[2]

D. R. Billinger, H. K. Preisler, A. A. Ager, J. G. Kie and B. S. Stewart, Modelling Movements of Free-Ranging Animals, Technical Report 610, Department of Statistics, University of California, Berkeley, 2001.

[3]

M. Davidian and D. M. Giltinan, Nonlinear models for repeated measurement data: An overview and update, Journal of Agricultural, Biological, and Environmental Statistics, 8 (2003), 387-419. doi: 10.1198/1085711032697.

[4]

B. Douglas, Tracker: Video Analysis and Modeling Tool, Tracker version 4.80, Copyright(c), 2013, URL http://www.cabrillo.edu/~dbrown/tracker.

[5]

R. F. Foelix, The Biology of Spiders, 3rd edition, Oxford University Press, 2011.

[6]

L. Grinstead, J. N. Pruitt, V. Settepani and T. Bilde, Individual personalities shape task differentiation in a social spider, Proceedings of the Royal Society B, 280 (2013). doi: 10.1098/rspb.2013.1407.

[7]

D. Halliday and R. Resnick, Fundamentals of Physics, John Wiley & Sons, Inc., New York, 1988.

[8]

P. Hoel and R. Jessen, Basic Statistics for Business and Economics, John Wiley & Sons, Inc., New York, 1971.

[9]

T. C. Jones and P. G. Parker, Costs and benefits of foraging associated with delayed dispersal in the spider anelosimus studiosus (araneae: Theridiidae), Journal of Arachnology, 28 (2000), 61-69.

[10]

T. C. Jones and P. G. Parker, Delayed dispersal benefits both mother and offspring in the cooperative spider anelosimus studiosus (araneae: Theridiidae), Behavioral Ecology, 13 (2002), 142-148. doi: 10.1093/beheco/13.1.142.

[11]

M. Joyner, C. Ross, C. Watts and T. Jones, A stochastic simulation model for anelosimus studiosus during prey capture: A case study for determination of optimal spacing, Mathematical Biosciences and Engineering, 11 (2014), 1411-1429. doi: 10.3934/mbe.2014.11.1411.

[12]

R. Larson and D. Falvo, Elementary Linear Algebra, 6th edition, Brooks/Cole, Belmont CA, 2010.

[13]

S. A. Naftilan, Transmission of vibrations in funnel and sheet spider webs, Biological Macromolecules, 24 (1999), 289-293. doi: 10.1016/S0141-8130(98)00092-0.

[14]

J. N. Pruitt, S. E. Riechert and T. C. Jones, Behavioural syndromes and their fitness consequences in a socially polymorphic spider, anelosimus studiosus, Animal Behaviour, 76 (2008), 871-879. doi: 10.1016/j.anbehav.2008.05.009.

[15]

R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2013, URL http://www.R-project.org/.

[16]

P. E. Smouse, S. Focardi, P. R. Moorcroft, J. G. Kie, J. D. Forester and J. M. Morales, Stochastic modelling of animal movement, Phi.l Trans.R. Soc. B., 365 (2010), 2201-2211. doi: 10.1098/rstb.2010.0078.

[1]

Michele L. Joyner, Chelsea R. Ross, Colton Watts, Thomas C. Jones. A stochastic simulation model for Anelosimus studiosus during prey capture: A case study for determination of optimal spacing. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1411-1429. doi: 10.3934/mbe.2014.11.1411

[2]

Yanyan Hu, Fubao Xi, Min Zhu. Least squares estimation for distribution-dependent stochastic differential delay equations. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1505-1536. doi: 10.3934/cpaa.2022027

[3]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

[4]

Robert Azencott, Yutheeka Gadhyan. Accurate parameter estimation for coupled stochastic dynamics. Conference Publications, 2009, 2009 (Special) : 44-53. doi: 10.3934/proc.2009.2009.44

[5]

Xinping Zhou, Yong Li, Xiaomeng Jiang. Periodic solutions in distribution of stochastic lattice differential equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022123

[6]

Pingping Niu, Shuai Lu, Jin Cheng. On periodic parameter identification in stochastic differential equations. Inverse Problems and Imaging, 2019, 13 (3) : 513-543. doi: 10.3934/ipi.2019025

[7]

W. Y. Tan, L.-J. Zhang, C.W. Chen. Stochastic modeling of carcinogenesis: State space models and estimation of parameters. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 297-322. doi: 10.3934/dcdsb.2004.4.297

[8]

Yayun Zheng, Xu Sun. Governing equations for Probability densities of stochastic differential equations with discrete time delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3615-3628. doi: 10.3934/dcdsb.2017182

[9]

Azmy S. Ackleh, Jeremy J. Thibodeaux. Parameter estimation in a structured erythropoiesis model. Mathematical Biosciences & Engineering, 2008, 5 (4) : 601-616. doi: 10.3934/mbe.2008.5.601

[10]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4887-4905. doi: 10.3934/dcdsb.2020317

[11]

Laura Martín-Fernández, Gianni Gilioli, Ettore Lanzarone, Joaquín Míguez, Sara Pasquali, Fabrizio Ruggeri, Diego P. Ruiz. A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system. Mathematical Biosciences & Engineering, 2014, 11 (3) : 573-597. doi: 10.3934/mbe.2014.11.573

[12]

Tomás Caraballo, Renato Colucci. A comparison between random and stochastic modeling for a SIR model. Communications on Pure and Applied Analysis, 2017, 16 (1) : 151-162. doi: 10.3934/cpaa.2017007

[13]

Yanan Zhao, Yuguo Lin, Daqing Jiang, Xuerong Mao, Yong Li. Stationary distribution of stochastic SIRS epidemic model with standard incidence. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2363-2378. doi: 10.3934/dcdsb.2016051

[14]

Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd. Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (3) : 553-576. doi: 10.3934/mbe.2012.9.553

[15]

Victor Berdichevsky. Distribution of minimum values of stochastic functionals. Networks and Heterogeneous Media, 2008, 3 (3) : 437-460. doi: 10.3934/nhm.2008.3.437

[16]

Xiangxiang Huang, Xianping Guo, Jianping Peng. A probability criterion for zero-sum stochastic games. Journal of Dynamics and Games, 2017, 4 (4) : 369-383. doi: 10.3934/jdg.2017020

[17]

Baoyin Xun, Kam C. Yuen, Kaiyong Wang. The finite-time ruin probability of a risk model with a general counting process and stochastic return. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1541-1556. doi: 10.3934/jimo.2021032

[18]

Tomás Caraballo, Maria-José Garrido-Atienza, Javier López-de-la-Cruz, Alain Rapaport. Modeling and analysis of random and stochastic input flows in the chemostat model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3591-3614. doi: 10.3934/dcdsb.2018280

[19]

Ferenc Hartung. Parameter estimation by quasilinearization in differential equations with state-dependent delays. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1611-1631. doi: 10.3934/dcdsb.2013.18.1611

[20]

Li Zu, Daqing Jiang, Donal O'Regan. Persistence and stationary distribution of a stochastic predator-prey model under regime switching. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2881-2897. doi: 10.3934/dcds.2017124

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (1)

[Back to Top]