• Previous Article
    A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes
  • MBE Home
  • This Issue
  • Next Article
    An aggregate stochastic model incorporating individual dynamics for predation movements of anelosimus studiosus
2015, 12(3): 609-623. doi: 10.3934/mbe.2015.12.609

Optimal information dissemination strategy to promote preventive behaviors in multilayer epidemic networks

1. 

Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506-5204, United States, United States

2. 

K-State Epicenter, Department of Electrical and Computer Engineering, Kansas State University, 2061 Rathbone Hall, Manhattan, KS 66506-5204

3. 

Department of Mathematics, Kansas State University, Manhattan, KS 66506-2602, United States

4. 

Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104-6391, United States

Received  August 2014 Revised  December 2014 Published  February 2015

Launching a prevention campaign to contain the spread of infection requires substantial financial investments; therefore, a trade-off exists between suppressing the epidemic and containing costs. Information exchange among individuals can occur as physical contacts (e.g., word of mouth, gatherings), which provide inherent possibilities of disease transmission, and non-physical contacts (e.g., email, social networks), through which information can be transmitted but the infection cannot be transmitted. Contact network (CN) incorporates physical contacts, and the information dissemination network (IDN) represents non-physical contacts, thereby generating a multilayer network structure. Inherent differences between these two layers cause alerting through CN to be more effective but more expensive than IDN. The constraint for an epidemic to die out derived from a nonlinear Perron-Frobenius problem that was transformed into a semi-definite matrix inequality and served as a constraint for a convex optimization problem. This method guarantees a dying-out epidemic by choosing the best nodes for adopting preventive behaviors with minimum monetary resources. Various numerical simulations with network models and a real-world social network validate our method.
Citation: Heman Shakeri, Faryad Darabi Sahneh, Caterina Scoglio, Pietro Poggi-Corradini, Victor M. Preciado. Optimal information dissemination strategy to promote preventive behaviors in multilayer epidemic networks. Mathematical Biosciences & Engineering, 2015, 12 (3) : 609-623. doi: 10.3934/mbe.2015.12.609
References:
[1]

O. Axelsson, Iterative Solution Methods,, Cambridge University Press, (1994).  doi: 10.1017/CBO9780511624100.  Google Scholar

[2]

A. L. Barabasi and R. Albert, Emergence of Scaling in Random Networks,, Science, 286 (1999), 509.  doi: 10.1126/science.286.5439.509.  Google Scholar

[3]

S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang and M. Zanin, The structure and dynamics of multilayer networks,, in Physics Reports, 544 (2014), 1.  doi: 10.1016/j.physrep.2014.07.001.  Google Scholar

[4]

S. Boyd and L. Vandenberghe, Convex Optimization,, Cambridge University Press, (2004).  doi: 10.1017/CBO9780511804441.  Google Scholar

[5]

D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec and C. Faloutsos, Epidemic Thresholds in Real Networks,, ACM Trans. Inf. Syst. Secur., 10 (2008), 1.  doi: 10.1145/1284680.1284681.  Google Scholar

[6]

A. Charnes and W. W. Cooper, Programming with linear fractional functionals,, Naval Research Logistics, 9 (1962), 181.  doi: 10.1002/nav.3800090303.  Google Scholar

[7]

F. Darabi Sahneh, F. N. Chowdhury and C. Scoglio, On the Existence of a Threshold for Preventive Behavioral Responses to Suppress Epidemic Spreading,, Sci. Rep., (2012).  doi: 10.1038/srep00632.  Google Scholar

[8]

F. Darabi Sahneh and C. Scoglio, Epidemic spread in human networks,, in 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), (2011), 3008.   Google Scholar

[9]

F. Darabi Sahneh and C. Scoglio, Optimal information dissemination in epidemic networks,, in 51st Annual Conference on Decision and Control (CDC), (2012), 1657.  doi: 10.1109/CDC.2012.6425833.  Google Scholar

[10]

M. Dickison, S. Havlin and H. E. Stanley, Epidemics on interconnected networks,, Physical Review, 85 (2012).  doi: 10.1103/PhysRevE.85.066109.  Google Scholar

[11]

R. Diestel, Graph Theory,, Springer Graduate Texts in Mathematics (GTM), (2012).   Google Scholar

[12]

S. Funk and V. A. Jansen, Interacting epidemics on overlay networks epidemic spreading in multiplex networks,, Physical Review, 81 (2010).   Google Scholar

[13]

A. Ganesh, L. Massoulie and D. Towsley, The effect of network topology on the spread of epidemics,, in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, 2 (2005), 1455.  doi: 10.1109/INFCOM.2005.1498374.  Google Scholar

[14]

C. Granell, S. Gómez and A. Arenas, Dynamical interplay between awareness and epidemic spreading in multiplex networks,, Physical review letters, 111 (2013).  doi: 10.1103/PhysRevLett.111.128701.  Google Scholar

[15]

M. C. Grant, S. Boyd and Y. Ye, CVX: Matlab software for disciplined convex programming (web page and software),, Available from: , ().   Google Scholar

[16]

J. Kuczynski and H. Wozniakowski, Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start,, SIAM journal on matrix analysis and applications, 13 (1992), 1094.  doi: 10.1137/0613066.  Google Scholar

[17]

B. Lemmens and R. Nussbaum, Nonlinear Perron-Frobenius Theory,, Cambridge University Press, (2012).  doi: 10.1017/CBO9781139026079.  Google Scholar

[18]

Y. Nesterov, Smoothing technique and its applications in semidefinite optimization,, Science, 110 (2007), 245.  doi: 10.1007/s10107-006-0001-8.  Google Scholar

[19]

Y. Nesterov and A. Nemirovskii, Interior-point Polynomial Algorithms in Convex Programming,, Society for Industrial and Applied Mathematics, (1994).  doi: 10.1137/1.9781611970791.  Google Scholar

[20]

M. Penrose, Random Geometric Graphs,, Oxford University Press, (2003).  doi: 10.1093/acprof:oso/9780198506263.001.0001.  Google Scholar

[21]

V. M. Preciado, D. Sahneh and C. Scoglio, A convex framework for optimal investment on disease awareness in social networks,, in Global Conference on Signal and Information Processing (GlobalSIP), (2013), 851.  doi: 10.1109/GlobalSIP.2013.6737025.  Google Scholar

[22]

A. Saumell-Mendiola, M. A. Serrano and M. Bogu, Epidemic spreading on interconnected networks,, Physical Review, 86 (2012).  doi: 10.1103/PhysRevE.86.026106.  Google Scholar

[23]

P. Schumm, W. Schumm and C. Scoglio, Impact of Preventive Responses to Epidemics in Rural Regions,, PloS one, 8 (2013).  doi: 10.1371/journal.pone.0059028.  Google Scholar

[24]

G. Sun, Pattern formation of an epidemic model with diffusion,, Nonlinear Dyn, 69 (2012), 1097.  doi: 10.1007/s11071-012-0330-5.  Google Scholar

[25]

G. Sun, Q. Liu, Zh. Jin, A. Chakraborty and B. Li, Influence of infection rate and migration on extinction of disease in spatial epidemics,, Journal of Theoretical Biology, 264 (2010), 95.  doi: 10.1016/j.jtbi.2010.01.006.  Google Scholar

[26]

P. Van Mieghem, The N-intertwined SIS epidemic network model,, Computing, 93 (2011), 147.  doi: 10.1007/s00607-011-0155-y.  Google Scholar

[27]

P. Van Mieghem, J. Omic and R. Kooij, Epidemic Thresholds in Real Networks,, IEEE/ACM Transactions on Networking, 17 (2009), 1.   Google Scholar

[28]

O. Yaǧan and V. Gligor, Analysis of complex contagions in random multiplex networks,, Physical Review, 86 (2012).   Google Scholar

show all references

References:
[1]

O. Axelsson, Iterative Solution Methods,, Cambridge University Press, (1994).  doi: 10.1017/CBO9780511624100.  Google Scholar

[2]

A. L. Barabasi and R. Albert, Emergence of Scaling in Random Networks,, Science, 286 (1999), 509.  doi: 10.1126/science.286.5439.509.  Google Scholar

[3]

S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang and M. Zanin, The structure and dynamics of multilayer networks,, in Physics Reports, 544 (2014), 1.  doi: 10.1016/j.physrep.2014.07.001.  Google Scholar

[4]

S. Boyd and L. Vandenberghe, Convex Optimization,, Cambridge University Press, (2004).  doi: 10.1017/CBO9780511804441.  Google Scholar

[5]

D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec and C. Faloutsos, Epidemic Thresholds in Real Networks,, ACM Trans. Inf. Syst. Secur., 10 (2008), 1.  doi: 10.1145/1284680.1284681.  Google Scholar

[6]

A. Charnes and W. W. Cooper, Programming with linear fractional functionals,, Naval Research Logistics, 9 (1962), 181.  doi: 10.1002/nav.3800090303.  Google Scholar

[7]

F. Darabi Sahneh, F. N. Chowdhury and C. Scoglio, On the Existence of a Threshold for Preventive Behavioral Responses to Suppress Epidemic Spreading,, Sci. Rep., (2012).  doi: 10.1038/srep00632.  Google Scholar

[8]

F. Darabi Sahneh and C. Scoglio, Epidemic spread in human networks,, in 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), (2011), 3008.   Google Scholar

[9]

F. Darabi Sahneh and C. Scoglio, Optimal information dissemination in epidemic networks,, in 51st Annual Conference on Decision and Control (CDC), (2012), 1657.  doi: 10.1109/CDC.2012.6425833.  Google Scholar

[10]

M. Dickison, S. Havlin and H. E. Stanley, Epidemics on interconnected networks,, Physical Review, 85 (2012).  doi: 10.1103/PhysRevE.85.066109.  Google Scholar

[11]

R. Diestel, Graph Theory,, Springer Graduate Texts in Mathematics (GTM), (2012).   Google Scholar

[12]

S. Funk and V. A. Jansen, Interacting epidemics on overlay networks epidemic spreading in multiplex networks,, Physical Review, 81 (2010).   Google Scholar

[13]

A. Ganesh, L. Massoulie and D. Towsley, The effect of network topology on the spread of epidemics,, in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, 2 (2005), 1455.  doi: 10.1109/INFCOM.2005.1498374.  Google Scholar

[14]

C. Granell, S. Gómez and A. Arenas, Dynamical interplay between awareness and epidemic spreading in multiplex networks,, Physical review letters, 111 (2013).  doi: 10.1103/PhysRevLett.111.128701.  Google Scholar

[15]

M. C. Grant, S. Boyd and Y. Ye, CVX: Matlab software for disciplined convex programming (web page and software),, Available from: , ().   Google Scholar

[16]

J. Kuczynski and H. Wozniakowski, Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start,, SIAM journal on matrix analysis and applications, 13 (1992), 1094.  doi: 10.1137/0613066.  Google Scholar

[17]

B. Lemmens and R. Nussbaum, Nonlinear Perron-Frobenius Theory,, Cambridge University Press, (2012).  doi: 10.1017/CBO9781139026079.  Google Scholar

[18]

Y. Nesterov, Smoothing technique and its applications in semidefinite optimization,, Science, 110 (2007), 245.  doi: 10.1007/s10107-006-0001-8.  Google Scholar

[19]

Y. Nesterov and A. Nemirovskii, Interior-point Polynomial Algorithms in Convex Programming,, Society for Industrial and Applied Mathematics, (1994).  doi: 10.1137/1.9781611970791.  Google Scholar

[20]

M. Penrose, Random Geometric Graphs,, Oxford University Press, (2003).  doi: 10.1093/acprof:oso/9780198506263.001.0001.  Google Scholar

[21]

V. M. Preciado, D. Sahneh and C. Scoglio, A convex framework for optimal investment on disease awareness in social networks,, in Global Conference on Signal and Information Processing (GlobalSIP), (2013), 851.  doi: 10.1109/GlobalSIP.2013.6737025.  Google Scholar

[22]

A. Saumell-Mendiola, M. A. Serrano and M. Bogu, Epidemic spreading on interconnected networks,, Physical Review, 86 (2012).  doi: 10.1103/PhysRevE.86.026106.  Google Scholar

[23]

P. Schumm, W. Schumm and C. Scoglio, Impact of Preventive Responses to Epidemics in Rural Regions,, PloS one, 8 (2013).  doi: 10.1371/journal.pone.0059028.  Google Scholar

[24]

G. Sun, Pattern formation of an epidemic model with diffusion,, Nonlinear Dyn, 69 (2012), 1097.  doi: 10.1007/s11071-012-0330-5.  Google Scholar

[25]

G. Sun, Q. Liu, Zh. Jin, A. Chakraborty and B. Li, Influence of infection rate and migration on extinction of disease in spatial epidemics,, Journal of Theoretical Biology, 264 (2010), 95.  doi: 10.1016/j.jtbi.2010.01.006.  Google Scholar

[26]

P. Van Mieghem, The N-intertwined SIS epidemic network model,, Computing, 93 (2011), 147.  doi: 10.1007/s00607-011-0155-y.  Google Scholar

[27]

P. Van Mieghem, J. Omic and R. Kooij, Epidemic Thresholds in Real Networks,, IEEE/ACM Transactions on Networking, 17 (2009), 1.   Google Scholar

[28]

O. Yaǧan and V. Gligor, Analysis of complex contagions in random multiplex networks,, Physical Review, 86 (2012).   Google Scholar

[1]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[2]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[3]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[7]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[8]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[9]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[10]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[11]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[12]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[13]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[14]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[16]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[17]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[18]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[19]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[20]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (17)

[Back to Top]