• Previous Article
    A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes
  • MBE Home
  • This Issue
  • Next Article
    An aggregate stochastic model incorporating individual dynamics for predation movements of anelosimus studiosus
2015, 12(3): 609-623. doi: 10.3934/mbe.2015.12.609

Optimal information dissemination strategy to promote preventive behaviors in multilayer epidemic networks

1. 

Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506-5204, United States, United States

2. 

K-State Epicenter, Department of Electrical and Computer Engineering, Kansas State University, 2061 Rathbone Hall, Manhattan, KS 66506-5204

3. 

Department of Mathematics, Kansas State University, Manhattan, KS 66506-2602, United States

4. 

Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104-6391, United States

Received  August 2014 Revised  December 2014 Published  February 2015

Launching a prevention campaign to contain the spread of infection requires substantial financial investments; therefore, a trade-off exists between suppressing the epidemic and containing costs. Information exchange among individuals can occur as physical contacts (e.g., word of mouth, gatherings), which provide inherent possibilities of disease transmission, and non-physical contacts (e.g., email, social networks), through which information can be transmitted but the infection cannot be transmitted. Contact network (CN) incorporates physical contacts, and the information dissemination network (IDN) represents non-physical contacts, thereby generating a multilayer network structure. Inherent differences between these two layers cause alerting through CN to be more effective but more expensive than IDN. The constraint for an epidemic to die out derived from a nonlinear Perron-Frobenius problem that was transformed into a semi-definite matrix inequality and served as a constraint for a convex optimization problem. This method guarantees a dying-out epidemic by choosing the best nodes for adopting preventive behaviors with minimum monetary resources. Various numerical simulations with network models and a real-world social network validate our method.
Citation: Heman Shakeri, Faryad Darabi Sahneh, Caterina Scoglio, Pietro Poggi-Corradini, Victor M. Preciado. Optimal information dissemination strategy to promote preventive behaviors in multilayer epidemic networks. Mathematical Biosciences & Engineering, 2015, 12 (3) : 609-623. doi: 10.3934/mbe.2015.12.609
References:
[1]

O. Axelsson, Iterative Solution Methods,, Cambridge University Press, (1994). doi: 10.1017/CBO9780511624100. Google Scholar

[2]

A. L. Barabasi and R. Albert, Emergence of Scaling in Random Networks,, Science, 286 (1999), 509. doi: 10.1126/science.286.5439.509. Google Scholar

[3]

S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang and M. Zanin, The structure and dynamics of multilayer networks,, in Physics Reports, 544 (2014), 1. doi: 10.1016/j.physrep.2014.07.001. Google Scholar

[4]

S. Boyd and L. Vandenberghe, Convex Optimization,, Cambridge University Press, (2004). doi: 10.1017/CBO9780511804441. Google Scholar

[5]

D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec and C. Faloutsos, Epidemic Thresholds in Real Networks,, ACM Trans. Inf. Syst. Secur., 10 (2008), 1. doi: 10.1145/1284680.1284681. Google Scholar

[6]

A. Charnes and W. W. Cooper, Programming with linear fractional functionals,, Naval Research Logistics, 9 (1962), 181. doi: 10.1002/nav.3800090303. Google Scholar

[7]

F. Darabi Sahneh, F. N. Chowdhury and C. Scoglio, On the Existence of a Threshold for Preventive Behavioral Responses to Suppress Epidemic Spreading,, Sci. Rep., (2012). doi: 10.1038/srep00632. Google Scholar

[8]

F. Darabi Sahneh and C. Scoglio, Epidemic spread in human networks,, in 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), (2011), 3008. Google Scholar

[9]

F. Darabi Sahneh and C. Scoglio, Optimal information dissemination in epidemic networks,, in 51st Annual Conference on Decision and Control (CDC), (2012), 1657. doi: 10.1109/CDC.2012.6425833. Google Scholar

[10]

M. Dickison, S. Havlin and H. E. Stanley, Epidemics on interconnected networks,, Physical Review, 85 (2012). doi: 10.1103/PhysRevE.85.066109. Google Scholar

[11]

R. Diestel, Graph Theory,, Springer Graduate Texts in Mathematics (GTM), (2012). Google Scholar

[12]

S. Funk and V. A. Jansen, Interacting epidemics on overlay networks epidemic spreading in multiplex networks,, Physical Review, 81 (2010). Google Scholar

[13]

A. Ganesh, L. Massoulie and D. Towsley, The effect of network topology on the spread of epidemics,, in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, 2 (2005), 1455. doi: 10.1109/INFCOM.2005.1498374. Google Scholar

[14]

C. Granell, S. Gómez and A. Arenas, Dynamical interplay between awareness and epidemic spreading in multiplex networks,, Physical review letters, 111 (2013). doi: 10.1103/PhysRevLett.111.128701. Google Scholar

[15]

M. C. Grant, S. Boyd and Y. Ye, CVX: Matlab software for disciplined convex programming (web page and software),, Available from: , (). Google Scholar

[16]

J. Kuczynski and H. Wozniakowski, Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start,, SIAM journal on matrix analysis and applications, 13 (1992), 1094. doi: 10.1137/0613066. Google Scholar

[17]

B. Lemmens and R. Nussbaum, Nonlinear Perron-Frobenius Theory,, Cambridge University Press, (2012). doi: 10.1017/CBO9781139026079. Google Scholar

[18]

Y. Nesterov, Smoothing technique and its applications in semidefinite optimization,, Science, 110 (2007), 245. doi: 10.1007/s10107-006-0001-8. Google Scholar

[19]

Y. Nesterov and A. Nemirovskii, Interior-point Polynomial Algorithms in Convex Programming,, Society for Industrial and Applied Mathematics, (1994). doi: 10.1137/1.9781611970791. Google Scholar

[20]

M. Penrose, Random Geometric Graphs,, Oxford University Press, (2003). doi: 10.1093/acprof:oso/9780198506263.001.0001. Google Scholar

[21]

V. M. Preciado, D. Sahneh and C. Scoglio, A convex framework for optimal investment on disease awareness in social networks,, in Global Conference on Signal and Information Processing (GlobalSIP), (2013), 851. doi: 10.1109/GlobalSIP.2013.6737025. Google Scholar

[22]

A. Saumell-Mendiola, M. A. Serrano and M. Bogu, Epidemic spreading on interconnected networks,, Physical Review, 86 (2012). doi: 10.1103/PhysRevE.86.026106. Google Scholar

[23]

P. Schumm, W. Schumm and C. Scoglio, Impact of Preventive Responses to Epidemics in Rural Regions,, PloS one, 8 (2013). doi: 10.1371/journal.pone.0059028. Google Scholar

[24]

G. Sun, Pattern formation of an epidemic model with diffusion,, Nonlinear Dyn, 69 (2012), 1097. doi: 10.1007/s11071-012-0330-5. Google Scholar

[25]

G. Sun, Q. Liu, Zh. Jin, A. Chakraborty and B. Li, Influence of infection rate and migration on extinction of disease in spatial epidemics,, Journal of Theoretical Biology, 264 (2010), 95. doi: 10.1016/j.jtbi.2010.01.006. Google Scholar

[26]

P. Van Mieghem, The N-intertwined SIS epidemic network model,, Computing, 93 (2011), 147. doi: 10.1007/s00607-011-0155-y. Google Scholar

[27]

P. Van Mieghem, J. Omic and R. Kooij, Epidemic Thresholds in Real Networks,, IEEE/ACM Transactions on Networking, 17 (2009), 1. Google Scholar

[28]

O. Yaǧan and V. Gligor, Analysis of complex contagions in random multiplex networks,, Physical Review, 86 (2012). Google Scholar

show all references

References:
[1]

O. Axelsson, Iterative Solution Methods,, Cambridge University Press, (1994). doi: 10.1017/CBO9780511624100. Google Scholar

[2]

A. L. Barabasi and R. Albert, Emergence of Scaling in Random Networks,, Science, 286 (1999), 509. doi: 10.1126/science.286.5439.509. Google Scholar

[3]

S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang and M. Zanin, The structure and dynamics of multilayer networks,, in Physics Reports, 544 (2014), 1. doi: 10.1016/j.physrep.2014.07.001. Google Scholar

[4]

S. Boyd and L. Vandenberghe, Convex Optimization,, Cambridge University Press, (2004). doi: 10.1017/CBO9780511804441. Google Scholar

[5]

D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec and C. Faloutsos, Epidemic Thresholds in Real Networks,, ACM Trans. Inf. Syst. Secur., 10 (2008), 1. doi: 10.1145/1284680.1284681. Google Scholar

[6]

A. Charnes and W. W. Cooper, Programming with linear fractional functionals,, Naval Research Logistics, 9 (1962), 181. doi: 10.1002/nav.3800090303. Google Scholar

[7]

F. Darabi Sahneh, F. N. Chowdhury and C. Scoglio, On the Existence of a Threshold for Preventive Behavioral Responses to Suppress Epidemic Spreading,, Sci. Rep., (2012). doi: 10.1038/srep00632. Google Scholar

[8]

F. Darabi Sahneh and C. Scoglio, Epidemic spread in human networks,, in 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), (2011), 3008. Google Scholar

[9]

F. Darabi Sahneh and C. Scoglio, Optimal information dissemination in epidemic networks,, in 51st Annual Conference on Decision and Control (CDC), (2012), 1657. doi: 10.1109/CDC.2012.6425833. Google Scholar

[10]

M. Dickison, S. Havlin and H. E. Stanley, Epidemics on interconnected networks,, Physical Review, 85 (2012). doi: 10.1103/PhysRevE.85.066109. Google Scholar

[11]

R. Diestel, Graph Theory,, Springer Graduate Texts in Mathematics (GTM), (2012). Google Scholar

[12]

S. Funk and V. A. Jansen, Interacting epidemics on overlay networks epidemic spreading in multiplex networks,, Physical Review, 81 (2010). Google Scholar

[13]

A. Ganesh, L. Massoulie and D. Towsley, The effect of network topology on the spread of epidemics,, in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, 2 (2005), 1455. doi: 10.1109/INFCOM.2005.1498374. Google Scholar

[14]

C. Granell, S. Gómez and A. Arenas, Dynamical interplay between awareness and epidemic spreading in multiplex networks,, Physical review letters, 111 (2013). doi: 10.1103/PhysRevLett.111.128701. Google Scholar

[15]

M. C. Grant, S. Boyd and Y. Ye, CVX: Matlab software for disciplined convex programming (web page and software),, Available from: , (). Google Scholar

[16]

J. Kuczynski and H. Wozniakowski, Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start,, SIAM journal on matrix analysis and applications, 13 (1992), 1094. doi: 10.1137/0613066. Google Scholar

[17]

B. Lemmens and R. Nussbaum, Nonlinear Perron-Frobenius Theory,, Cambridge University Press, (2012). doi: 10.1017/CBO9781139026079. Google Scholar

[18]

Y. Nesterov, Smoothing technique and its applications in semidefinite optimization,, Science, 110 (2007), 245. doi: 10.1007/s10107-006-0001-8. Google Scholar

[19]

Y. Nesterov and A. Nemirovskii, Interior-point Polynomial Algorithms in Convex Programming,, Society for Industrial and Applied Mathematics, (1994). doi: 10.1137/1.9781611970791. Google Scholar

[20]

M. Penrose, Random Geometric Graphs,, Oxford University Press, (2003). doi: 10.1093/acprof:oso/9780198506263.001.0001. Google Scholar

[21]

V. M. Preciado, D. Sahneh and C. Scoglio, A convex framework for optimal investment on disease awareness in social networks,, in Global Conference on Signal and Information Processing (GlobalSIP), (2013), 851. doi: 10.1109/GlobalSIP.2013.6737025. Google Scholar

[22]

A. Saumell-Mendiola, M. A. Serrano and M. Bogu, Epidemic spreading on interconnected networks,, Physical Review, 86 (2012). doi: 10.1103/PhysRevE.86.026106. Google Scholar

[23]

P. Schumm, W. Schumm and C. Scoglio, Impact of Preventive Responses to Epidemics in Rural Regions,, PloS one, 8 (2013). doi: 10.1371/journal.pone.0059028. Google Scholar

[24]

G. Sun, Pattern formation of an epidemic model with diffusion,, Nonlinear Dyn, 69 (2012), 1097. doi: 10.1007/s11071-012-0330-5. Google Scholar

[25]

G. Sun, Q. Liu, Zh. Jin, A. Chakraborty and B. Li, Influence of infection rate and migration on extinction of disease in spatial epidemics,, Journal of Theoretical Biology, 264 (2010), 95. doi: 10.1016/j.jtbi.2010.01.006. Google Scholar

[26]

P. Van Mieghem, The N-intertwined SIS epidemic network model,, Computing, 93 (2011), 147. doi: 10.1007/s00607-011-0155-y. Google Scholar

[27]

P. Van Mieghem, J. Omic and R. Kooij, Epidemic Thresholds in Real Networks,, IEEE/ACM Transactions on Networking, 17 (2009), 1. Google Scholar

[28]

O. Yaǧan and V. Gligor, Analysis of complex contagions in random multiplex networks,, Physical Review, 86 (2012). Google Scholar

[1]

Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009

[2]

Stefan Klus, Péter Koltai, Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (1) : 51-79. doi: 10.3934/jcd.2016003

[3]

Martin Lustig, Caglar Uyanik. Perron-Frobenius theory and frequency convergence for reducible substitutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 355-385. doi: 10.3934/dcds.2017015

[4]

Gary Froyland, Ognjen Stancevic. Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 457-472. doi: 10.3934/dcdsb.2010.14.457

[5]

Shuping Li, Zhen Jin. Impacts of cluster on network topology structure and epidemic spreading. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3749-3770. doi: 10.3934/dcdsb.2017187

[6]

Wei-Jian Bo, Guo Lin. Asymptotic spreading of time periodic competition diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3901-3914. doi: 10.3934/dcdsb.2018116

[7]

Min Zhu, Xiaofei Guo, Zhigui Lin. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1565-1583. doi: 10.3934/mbe.2017081

[8]

Stelian Ion, Gabriela Marinoschi. A self-organizing criticality mathematical model for contamination and epidemic spreading. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 383-405. doi: 10.3934/dcdsb.2017018

[9]

Meng Zhao, Wan-Tong Li, Wenjie Ni. Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019199

[10]

Xinjian Wang, Guo Lin. Asymptotic spreading for a time-periodic predator-prey system. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2983-2999. doi: 10.3934/cpaa.2019133

[11]

Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5223-5262. doi: 10.3934/dcds.2019213

[12]

Zhong Wan, Jingjing Liu, Jing Zhang. Nonlinear optimization to management problems of end-of-life vehicles with environmental protection awareness and damaged/aging degrees. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-23. doi: 10.3934/jimo.2019046

[13]

Hans F. Weinberger, Xiao-Qiang Zhao. An extension of the formula for spreading speeds. Mathematical Biosciences & Engineering, 2010, 7 (1) : 187-194. doi: 10.3934/mbe.2010.7.187

[14]

Yubin Liu, Peixuan Weng. Asymptotic spreading of a three dimensional Lotka-Volterra cooperative-competitive system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 505-518. doi: 10.3934/dcdsb.2015.20.505

[15]

Mei Li, Zhigui Lin. The spreading fronts in a mutualistic model with advection. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2089-2105. doi: 10.3934/dcdsb.2015.20.2089

[16]

Igor Griva, Roman A. Polyak. Proximal point nonlinear rescaling method for convex optimization. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 283-299. doi: 10.3934/naco.2011.1.283

[17]

Hans Weinberger. On sufficient conditions for a linearly determinate spreading speed. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2267-2280. doi: 10.3934/dcdsb.2012.17.2267

[18]

Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583

[19]

F. S. Vannucchi, S. Boccaletti. Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences & Engineering, 2004, 1 (1) : 49-55. doi: 10.3934/mbe.2004.1.49

[20]

Simone Göttlich, Sebastian Kühn, Jan Peter Ohst, Stefan Ruzika, Markus Thiemann. Evacuation dynamics influenced by spreading hazardous material. Networks & Heterogeneous Media, 2011, 6 (3) : 443-464. doi: 10.3934/nhm.2011.6.443

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

[Back to Top]