- Previous Article
- MBE Home
- This Issue
-
Next Article
Optimal information dissemination strategy to promote preventive behaviors in multilayer epidemic networks
A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes
1. | 6775 Medical Science Building II, Ann Arbor, MI 48109-5620, United States |
2. | B28-G045W NCRC, Ann Arbor, MI 48109-5620, United States |
3. | 6730 Medical Science Building II, Ann Arbor, MI 48109-5620, United States |
References:
[1] |
I. Y. Adamson, Drug-induced pulmonary fibrosis, Environmental health perspectives, 55 (1984), 25-36. |
[2] |
C. E. Barry, H. I. Boshoff, V. Dartois, T. Dick, S. Ehrt, J. Flynn, D. Schnappinger, R. J. Wilkinson and D. Young, The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies, Nature reviews. Microbiology, 7 (2009), 845-855.
doi: 10.1038/nrmicro2236. |
[3] |
S. M. Blower, A. R. McLean, T. C. Porco, P. M. Small, P. C. Hopewell, M. A. Sanchez and A. R. Moss, The intrinsic transmission dynamics of tuberculosis epidemics, Nature Medicine, 1 (1995), 815-821.
doi: 10.1038/nm0895-815. |
[4] |
P.-J. Cardona, New insights on the nature of latent tuberculosis infection and its treatment, Inflammation & allergy drug targets, 6 (2007), 27-39.
doi: 10.2174/187152807780077282. |
[5] |
C. Castillo-Chávez and J. Aparicio, Mathematical modelling of tuberculosis epidemics, Mathematical Biosciences and Engineering, 6 (2009), 209-237.
doi: 10.3934/mbe.2009.6.209. |
[6] |
C. Castillo-Chavez and Z. Feng, To treat or not to treat: The case of tuberculosis, Journal of mathematical biology, 35 (1997), 629-656.
doi: 10.1007/s002850050069. |
[7] |
A. A. Chackerian, J. M. Alt, T. V. Perera, C. C. Dascher and S. M. Behar, Dissemination of Mycobacterium tuberculosis Is Influenced by Host Factors and Precedes the Initiation of T-Cell Immunity, Infection and Immunity, 70 (2002), 4501-4509.
doi: 10.1128/IAI.70.8.4501-4509.2002. |
[8] |
N. A. Cilfone, C. R. Perry, D. E. Kirschner and J. J. Linderman, Multi-scale modeling predicts a balance of tumor necrosis factor-$\alpha$ and interleukin-10 controls the granuloma environment during Mycobacterium tuberculosis infection, PloS one, 8 (2013), e68680.
doi: 10.1371/journal.pone.0068680. |
[9] |
M. T. Coleman, R. Y. Chen, M. Lee, P. L. Lin, L. E. Dodd, P. Maiello, L. E. Via, Y. Kim, G. Marriner, V. Dartois, C. Scanga, C. Janssen, J. Wang, E. Klein, S. N. Cho, C. E. Barry 3rd and J. L. Flynn, PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis, Sci Transl Med, 6 (2014), p265ra167.
doi: 10.1126/scitranslmed.3009500. |
[10] |
J. A. Cooper, D. A. White and R. A. Matthay, Drug-induced pulmonary disease. Part 1: Cytotoxic drugs, The American review of respiratory disease, 133 (1986), 321-340. |
[11] |
E. L. Corbett, C. J. Watt, N. Walker, D. Maher, B. G. Williams, M. C. Raviglione and C. Dye, The growing burden of tuberculosis: Global trends and interactions with the HIV epidemic, Archives of internal medicine, 163 (2003), 1009-1021.
doi: 10.1001/archinte.163.9.1009. |
[12] |
M. H. Daba, K. E. El-Tahir, M. N. Al-Arifi and O. A. Gubara, Drug-induced pulmonary fibrosis, 2004. |
[13] |
O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, Journal of the Royal Society, Interface / the Royal Society, 7 (2010), 873-885.
doi: 10.1098/rsif.2009.0386. |
[14] |
C. Dye, G. P. Garnett, K. Sleeman and B. G. Williams, Prospects for worldwide tuberculosis control under the WHO DOTS strategy, The Lancet, 352 (1998), 1886-1891.
doi: 10.1016/S0140-6736(98)03199-7. |
[15] |
M. Fallahi-Sichani, J. L. Flynn, J. J. Linderman and D. E. Kirschner, Differential risk of tuberculosis reactivation among anti-TNF therapies is due to drug binding kinetics and permeability, Journal of immunology (Baltimore, Md. : 1950), 188 (2012), 3169-3178.
doi: 10.4049/jimmunol.1103298. |
[16] |
M. Fallahi-Sichani, D. E. Kirschner and J. J. Linderman, NF-$\kappa$B Signaling Dynamics Play a Key Role in Infection Control in Tuberculosis, Frontiers in physiology, 2012.
doi: 10.3389/fphys.2012.00170. |
[17] |
M. Fallahi-Sichani, M. A. Schaller, D. E. Kirschner, S. L. Kunkel and J. J. Linderman, Identification of key processes that control tumor necrosis factor availability in a tuberculosis granuloma, PLoS computational biology, 6 (2010), e1000778, 19pp.
doi: 10.1371/journal.pcbi.1000778. |
[18] |
Z. Feng, C. Castillo-Chavez and A. F. Capurro, A model for tuberculosis with exogenous reinfection, Theoretical population biology, 57 (2000), 235-247.
doi: 10.1006/tpbi.2000.1451. |
[19] |
J. L. Flynn and J. Chan, Immunology of tuberculosis, Annual review of immunology, 19 (2001), 93-129. |
[20] |
C. Gong, J. T. Mattila, M. Miller, J. L. Flynn, J. J. Linderman and D. Kirschner, Predicting lymph node output efficiency using systems biology, Journal of theoretical biology, 335 (2013), 169-184.
doi: 10.1016/j.jtbi.2013.06.016. |
[21] |
G. Guzzetta, M. Ajelli, Z. Yang, S. Merler, C. Furlanello and D. Kirschner, Modeling socio-demography to capture tuberculosis transmission dynamics in a low burden setting, Journal of theoretical biology, 289 (2011), 197-205.
doi: 10.1016/j.jtbi.2011.08.032. |
[22] |
D. Kirschner, Dynamics of co-infection with M. Tuberculosis and HIV-1, Theoretical population biology, 55 (1999), 94-109. |
[23] |
D. E. Kirschner, S. T. Chang, T. W. Riggs, N. Perry and J. J. Linderman, Toward a multiscale model of antigen presentation in immunity, Immunological reviews, 216 (2007), 93-118. |
[24] |
P. L. Lin, T. Coleman, J. P. J. Carney, B. J. Lopresti, J. Tomko, D. Fillmore, V. Dartois, C. Scanga, L. J. Frye, Ch. Janssen, E. Klein, C. E. Barry and Joanne L Flynn, Radiologic responses in cynomolgous macaques for assessing tuberculosis chemotherapy regimens, Antimicrobial agents and chemotherapy, 57 (2013), 4237-4244.
doi: 10.1128/AAC.00277-13. |
[25] |
P. L. Lin, C. B. Ford, M. T. Coleman, A. J. Myers, R. Gawande, T. Ioerger, J. Sacchettini, S. M. Fortune and J. L. Flynn, Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing, Nature medicine, 20 (2014), 75-79.
doi: 10.1038/nm.3412. |
[26] |
P. L. Lin, M. Rodgers, L. Smith, M. Bigbee, A. Myers, C. Bigbee, I. Chiosea, S. V. Capuano, C. Fuhrman, E. Klein and J. L. Flynn, Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model, Infection and immunity, 77 (2009), 4631-4642.
doi: 10.1128/IAI.00592-09. |
[27] |
J. J. Linderman, T. Riggs, M. Pande, M. Miller, S. Marino and D. E. Kirschner, Characterizing the dynamics of CD4+ T cell priming within a lymph node, Journal of immunology (Baltimore, Md. : 1950), 184 (2010), 2873-2885.
doi: 10.4049/jimmunol.0903117. |
[28] |
G. Magombedze, W. Garira and E. Mwenje, Modelling the human immune response mechanisms to mycobacterium tuberculosis infection in the lungs, Mathematical biosciences and engineering : MBE, 3 (2006), 661-682.
doi: 10.3934/mbe.2006.3.661. |
[29] |
G. Magombedze and N. Mulder, A mathematical representation of the development of Mycobacterium tuberculosis active, latent and dormant stages, Journal of theoretical biology, 292 (2012), 44-59.
doi: 10.1016/j.jtbi.2011.09.025. |
[30] |
S. Marino, M. El-Kebir and D. Kirschner, A hybrid multi-compartment model of granuloma formation and T cell priming in tuberculosis, Journal of theoretical biology, 280 (2011), 50-62.
doi: 10.1016/j.jtbi.2011.03.022. |
[31] |
S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, Journal of theoretical biology, 254 (2008), 178-196.
doi: 10.1016/j.jtbi.2008.04.011. |
[32] |
S. Marino and D. E. Kirschner, The human immune response to Mycobacterium tuberculosis in lung and lymph node, Journal of theoretical biology, 227 (2004), 463-486.
doi: 10.1016/j.jtbi.2003.11.023. |
[33] |
S. Marino, J. J. Linderman and D. E. Kirschner, A multifaceted approach to modeling the immune response in tuberculosis, Wiley interdisciplinary reviews. Systems biology and medicine, 3 (2011), 479-489.
doi: 10.1002/wsbm.131. |
[34] |
F. A. Milner, M. Iannelli and Z. Feng, A Two-Strain Tuberculosis Model with Age of Infection, SIAM Journal on Applied Mathematics, 62 (2002), 1634-1656.
doi: 10.1137/S003613990038205X. |
[35] |
B. M. Murphy, B. H. Singer, S. Anderson and D. Kirschner, Comparing epidemic tuberculosis in demographically distinct heterogeneous populations, Mathematical Biosciences, 180 (2002), 161-185.
doi: 10.1016/S0025-5564(02)00133-5. |
[36] |
B. M. Murphy, B. H. Singer and D. Kirschner, On treatment of tuberculosis in heterogeneous populations, Journal of Theoretical Biology, 223 (2003), 391-404.
doi: 10.1016/S0022-5193(03)00038-9. |
[37] |
A. O'Garra, P. S. Redford, F. W. McNab, C. I. Bloom, R. J. Wilkinson and M. P. R. Berry, The immune response in tuberculosis, Annual review of immunology, 31 (2013), 475-527.
doi: 10.1146/annurev-immunol-032712-095939. |
[38] | |
[39] |
R. Pabst, J. Westermann and H. J. Rothkotter, Immunoarchitecture of regenerated splenic and lymph node transplants, Int Rev Cytol, 128 (1991), 215-260.
doi: 10.1016/S0074-7696(08)60500-8. |
[40] |
T. H. Petersen, E. A. Calle, L. Zhao, E. J. Lee, L. Gui, M. B. Raredon, K. Gavrilov, T. Yi, Z. W. Zhuang, C. Breuer, E. Herzog and L. E. Niklason, Tissue-engineered lungs for in vivo implantation, Science, 329 (2010), 538-541.
doi: 10.1126/science.1189345. |
[41] |
L. Ramakrishnan, Revisiting the role of the granuloma in tuberculosis, Nature reviews. Immunology, 12 (2012), 352-366.
doi: 10.1038/nri3211. |
[42] |
J. Rengarajan, B. R. Bloom and E. J. Rubin, Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), 8327-8332.
doi: 10.1073/pnas.0503272102. |
[43] |
J. L. Segovia-Juarez, S. Ganguli and D. Kirschner, Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model, Journal of theoretical biology, 231 (2004), 357-376.
doi: 10.1016/j.jtbi.2004.06.031. |
[44] |
B. H. Singer and D. E. Kirschner, Influence of backward bifurcation on interpretation of r(0) in a model of epidemic tuberculosis with reinfection, Mathematical biosciences and engineering: MBE, 1 (2004), 81-93.
doi: 10.3934/mbe.2004.1.81. |
[45] |
L. E. Via, D. M. Weiner, D. Schimel, P. L. Lin, E. Dayao, S. L. Tankersley, Y. Cai, M. T. Coleman, J. Tomko, P. Paripati, M. Orandle, R. J. Kastenmayer, M. Tartakovsky, A. Rosenthal, D. Portevin, S. Y. Eum, S. Lahouar, S. Gagneux, D. B. Young, J. L. Flynn and C. E. Barry, Differential virulence and disease progression following Mycobacterium tuberculosis complex infection of the common marmoset (Callithrix jacchus), Infection and immunity, 81 (2013), 2909-2919.
doi: 10.1128/IAI.00632-13. |
[46] |
J. E. Wigginton and D. Kirschner, A Model to Predict Cell-Mediated Immune Regulatory Mechanisms During Human Infection with Mycobacterium tuberculosis, The Journal of Immunology, 166 (2001), 1951-1967.
doi: 10.4049/jimmunol.166.3.1951. |
[47] |
P. Ye and D. E. Kirschner, Reevaluation of T Cell Receptor Excision Circles as a Measure of Human Recent Thymic Emigrants, The Journal of Immunology, 168 (2002), 4968-4979.
doi: 10.4049/jimmunol.168.10.4968. |
[48] |
D. Young, J. Stark and D. Kirschner, Systems biology of persistent infection: Tuberculosis as a case study, Nature reviews. Microbiology, 6 (2008), 520-528.
doi: 10.1038/nrmicro1919. |
show all references
References:
[1] |
I. Y. Adamson, Drug-induced pulmonary fibrosis, Environmental health perspectives, 55 (1984), 25-36. |
[2] |
C. E. Barry, H. I. Boshoff, V. Dartois, T. Dick, S. Ehrt, J. Flynn, D. Schnappinger, R. J. Wilkinson and D. Young, The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies, Nature reviews. Microbiology, 7 (2009), 845-855.
doi: 10.1038/nrmicro2236. |
[3] |
S. M. Blower, A. R. McLean, T. C. Porco, P. M. Small, P. C. Hopewell, M. A. Sanchez and A. R. Moss, The intrinsic transmission dynamics of tuberculosis epidemics, Nature Medicine, 1 (1995), 815-821.
doi: 10.1038/nm0895-815. |
[4] |
P.-J. Cardona, New insights on the nature of latent tuberculosis infection and its treatment, Inflammation & allergy drug targets, 6 (2007), 27-39.
doi: 10.2174/187152807780077282. |
[5] |
C. Castillo-Chávez and J. Aparicio, Mathematical modelling of tuberculosis epidemics, Mathematical Biosciences and Engineering, 6 (2009), 209-237.
doi: 10.3934/mbe.2009.6.209. |
[6] |
C. Castillo-Chavez and Z. Feng, To treat or not to treat: The case of tuberculosis, Journal of mathematical biology, 35 (1997), 629-656.
doi: 10.1007/s002850050069. |
[7] |
A. A. Chackerian, J. M. Alt, T. V. Perera, C. C. Dascher and S. M. Behar, Dissemination of Mycobacterium tuberculosis Is Influenced by Host Factors and Precedes the Initiation of T-Cell Immunity, Infection and Immunity, 70 (2002), 4501-4509.
doi: 10.1128/IAI.70.8.4501-4509.2002. |
[8] |
N. A. Cilfone, C. R. Perry, D. E. Kirschner and J. J. Linderman, Multi-scale modeling predicts a balance of tumor necrosis factor-$\alpha$ and interleukin-10 controls the granuloma environment during Mycobacterium tuberculosis infection, PloS one, 8 (2013), e68680.
doi: 10.1371/journal.pone.0068680. |
[9] |
M. T. Coleman, R. Y. Chen, M. Lee, P. L. Lin, L. E. Dodd, P. Maiello, L. E. Via, Y. Kim, G. Marriner, V. Dartois, C. Scanga, C. Janssen, J. Wang, E. Klein, S. N. Cho, C. E. Barry 3rd and J. L. Flynn, PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis, Sci Transl Med, 6 (2014), p265ra167.
doi: 10.1126/scitranslmed.3009500. |
[10] |
J. A. Cooper, D. A. White and R. A. Matthay, Drug-induced pulmonary disease. Part 1: Cytotoxic drugs, The American review of respiratory disease, 133 (1986), 321-340. |
[11] |
E. L. Corbett, C. J. Watt, N. Walker, D. Maher, B. G. Williams, M. C. Raviglione and C. Dye, The growing burden of tuberculosis: Global trends and interactions with the HIV epidemic, Archives of internal medicine, 163 (2003), 1009-1021.
doi: 10.1001/archinte.163.9.1009. |
[12] |
M. H. Daba, K. E. El-Tahir, M. N. Al-Arifi and O. A. Gubara, Drug-induced pulmonary fibrosis, 2004. |
[13] |
O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, Journal of the Royal Society, Interface / the Royal Society, 7 (2010), 873-885.
doi: 10.1098/rsif.2009.0386. |
[14] |
C. Dye, G. P. Garnett, K. Sleeman and B. G. Williams, Prospects for worldwide tuberculosis control under the WHO DOTS strategy, The Lancet, 352 (1998), 1886-1891.
doi: 10.1016/S0140-6736(98)03199-7. |
[15] |
M. Fallahi-Sichani, J. L. Flynn, J. J. Linderman and D. E. Kirschner, Differential risk of tuberculosis reactivation among anti-TNF therapies is due to drug binding kinetics and permeability, Journal of immunology (Baltimore, Md. : 1950), 188 (2012), 3169-3178.
doi: 10.4049/jimmunol.1103298. |
[16] |
M. Fallahi-Sichani, D. E. Kirschner and J. J. Linderman, NF-$\kappa$B Signaling Dynamics Play a Key Role in Infection Control in Tuberculosis, Frontiers in physiology, 2012.
doi: 10.3389/fphys.2012.00170. |
[17] |
M. Fallahi-Sichani, M. A. Schaller, D. E. Kirschner, S. L. Kunkel and J. J. Linderman, Identification of key processes that control tumor necrosis factor availability in a tuberculosis granuloma, PLoS computational biology, 6 (2010), e1000778, 19pp.
doi: 10.1371/journal.pcbi.1000778. |
[18] |
Z. Feng, C. Castillo-Chavez and A. F. Capurro, A model for tuberculosis with exogenous reinfection, Theoretical population biology, 57 (2000), 235-247.
doi: 10.1006/tpbi.2000.1451. |
[19] |
J. L. Flynn and J. Chan, Immunology of tuberculosis, Annual review of immunology, 19 (2001), 93-129. |
[20] |
C. Gong, J. T. Mattila, M. Miller, J. L. Flynn, J. J. Linderman and D. Kirschner, Predicting lymph node output efficiency using systems biology, Journal of theoretical biology, 335 (2013), 169-184.
doi: 10.1016/j.jtbi.2013.06.016. |
[21] |
G. Guzzetta, M. Ajelli, Z. Yang, S. Merler, C. Furlanello and D. Kirschner, Modeling socio-demography to capture tuberculosis transmission dynamics in a low burden setting, Journal of theoretical biology, 289 (2011), 197-205.
doi: 10.1016/j.jtbi.2011.08.032. |
[22] |
D. Kirschner, Dynamics of co-infection with M. Tuberculosis and HIV-1, Theoretical population biology, 55 (1999), 94-109. |
[23] |
D. E. Kirschner, S. T. Chang, T. W. Riggs, N. Perry and J. J. Linderman, Toward a multiscale model of antigen presentation in immunity, Immunological reviews, 216 (2007), 93-118. |
[24] |
P. L. Lin, T. Coleman, J. P. J. Carney, B. J. Lopresti, J. Tomko, D. Fillmore, V. Dartois, C. Scanga, L. J. Frye, Ch. Janssen, E. Klein, C. E. Barry and Joanne L Flynn, Radiologic responses in cynomolgous macaques for assessing tuberculosis chemotherapy regimens, Antimicrobial agents and chemotherapy, 57 (2013), 4237-4244.
doi: 10.1128/AAC.00277-13. |
[25] |
P. L. Lin, C. B. Ford, M. T. Coleman, A. J. Myers, R. Gawande, T. Ioerger, J. Sacchettini, S. M. Fortune and J. L. Flynn, Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing, Nature medicine, 20 (2014), 75-79.
doi: 10.1038/nm.3412. |
[26] |
P. L. Lin, M. Rodgers, L. Smith, M. Bigbee, A. Myers, C. Bigbee, I. Chiosea, S. V. Capuano, C. Fuhrman, E. Klein and J. L. Flynn, Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model, Infection and immunity, 77 (2009), 4631-4642.
doi: 10.1128/IAI.00592-09. |
[27] |
J. J. Linderman, T. Riggs, M. Pande, M. Miller, S. Marino and D. E. Kirschner, Characterizing the dynamics of CD4+ T cell priming within a lymph node, Journal of immunology (Baltimore, Md. : 1950), 184 (2010), 2873-2885.
doi: 10.4049/jimmunol.0903117. |
[28] |
G. Magombedze, W. Garira and E. Mwenje, Modelling the human immune response mechanisms to mycobacterium tuberculosis infection in the lungs, Mathematical biosciences and engineering : MBE, 3 (2006), 661-682.
doi: 10.3934/mbe.2006.3.661. |
[29] |
G. Magombedze and N. Mulder, A mathematical representation of the development of Mycobacterium tuberculosis active, latent and dormant stages, Journal of theoretical biology, 292 (2012), 44-59.
doi: 10.1016/j.jtbi.2011.09.025. |
[30] |
S. Marino, M. El-Kebir and D. Kirschner, A hybrid multi-compartment model of granuloma formation and T cell priming in tuberculosis, Journal of theoretical biology, 280 (2011), 50-62.
doi: 10.1016/j.jtbi.2011.03.022. |
[31] |
S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, Journal of theoretical biology, 254 (2008), 178-196.
doi: 10.1016/j.jtbi.2008.04.011. |
[32] |
S. Marino and D. E. Kirschner, The human immune response to Mycobacterium tuberculosis in lung and lymph node, Journal of theoretical biology, 227 (2004), 463-486.
doi: 10.1016/j.jtbi.2003.11.023. |
[33] |
S. Marino, J. J. Linderman and D. E. Kirschner, A multifaceted approach to modeling the immune response in tuberculosis, Wiley interdisciplinary reviews. Systems biology and medicine, 3 (2011), 479-489.
doi: 10.1002/wsbm.131. |
[34] |
F. A. Milner, M. Iannelli and Z. Feng, A Two-Strain Tuberculosis Model with Age of Infection, SIAM Journal on Applied Mathematics, 62 (2002), 1634-1656.
doi: 10.1137/S003613990038205X. |
[35] |
B. M. Murphy, B. H. Singer, S. Anderson and D. Kirschner, Comparing epidemic tuberculosis in demographically distinct heterogeneous populations, Mathematical Biosciences, 180 (2002), 161-185.
doi: 10.1016/S0025-5564(02)00133-5. |
[36] |
B. M. Murphy, B. H. Singer and D. Kirschner, On treatment of tuberculosis in heterogeneous populations, Journal of Theoretical Biology, 223 (2003), 391-404.
doi: 10.1016/S0022-5193(03)00038-9. |
[37] |
A. O'Garra, P. S. Redford, F. W. McNab, C. I. Bloom, R. J. Wilkinson and M. P. R. Berry, The immune response in tuberculosis, Annual review of immunology, 31 (2013), 475-527.
doi: 10.1146/annurev-immunol-032712-095939. |
[38] | |
[39] |
R. Pabst, J. Westermann and H. J. Rothkotter, Immunoarchitecture of regenerated splenic and lymph node transplants, Int Rev Cytol, 128 (1991), 215-260.
doi: 10.1016/S0074-7696(08)60500-8. |
[40] |
T. H. Petersen, E. A. Calle, L. Zhao, E. J. Lee, L. Gui, M. B. Raredon, K. Gavrilov, T. Yi, Z. W. Zhuang, C. Breuer, E. Herzog and L. E. Niklason, Tissue-engineered lungs for in vivo implantation, Science, 329 (2010), 538-541.
doi: 10.1126/science.1189345. |
[41] |
L. Ramakrishnan, Revisiting the role of the granuloma in tuberculosis, Nature reviews. Immunology, 12 (2012), 352-366.
doi: 10.1038/nri3211. |
[42] |
J. Rengarajan, B. R. Bloom and E. J. Rubin, Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005), 8327-8332.
doi: 10.1073/pnas.0503272102. |
[43] |
J. L. Segovia-Juarez, S. Ganguli and D. Kirschner, Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model, Journal of theoretical biology, 231 (2004), 357-376.
doi: 10.1016/j.jtbi.2004.06.031. |
[44] |
B. H. Singer and D. E. Kirschner, Influence of backward bifurcation on interpretation of r(0) in a model of epidemic tuberculosis with reinfection, Mathematical biosciences and engineering: MBE, 1 (2004), 81-93.
doi: 10.3934/mbe.2004.1.81. |
[45] |
L. E. Via, D. M. Weiner, D. Schimel, P. L. Lin, E. Dayao, S. L. Tankersley, Y. Cai, M. T. Coleman, J. Tomko, P. Paripati, M. Orandle, R. J. Kastenmayer, M. Tartakovsky, A. Rosenthal, D. Portevin, S. Y. Eum, S. Lahouar, S. Gagneux, D. B. Young, J. L. Flynn and C. E. Barry, Differential virulence and disease progression following Mycobacterium tuberculosis complex infection of the common marmoset (Callithrix jacchus), Infection and immunity, 81 (2013), 2909-2919.
doi: 10.1128/IAI.00632-13. |
[46] |
J. E. Wigginton and D. Kirschner, A Model to Predict Cell-Mediated Immune Regulatory Mechanisms During Human Infection with Mycobacterium tuberculosis, The Journal of Immunology, 166 (2001), 1951-1967.
doi: 10.4049/jimmunol.166.3.1951. |
[47] |
P. Ye and D. E. Kirschner, Reevaluation of T Cell Receptor Excision Circles as a Measure of Human Recent Thymic Emigrants, The Journal of Immunology, 168 (2002), 4968-4979.
doi: 10.4049/jimmunol.168.10.4968. |
[48] |
D. Young, J. Stark and D. Kirschner, Systems biology of persistent infection: Tuberculosis as a case study, Nature reviews. Microbiology, 6 (2008), 520-528.
doi: 10.1038/nrmicro1919. |
[1] |
Adam Sullivan, Folashade Agusto, Sharon Bewick, Chunlei Su, Suzanne Lenhart, Xiaopeng Zhao. A mathematical model for within-host Toxoplasma gondii invasion dynamics. Mathematical Biosciences & Engineering, 2012, 9 (3) : 647-662. doi: 10.3934/mbe.2012.9.647 |
[2] |
Cameron J. Browne, Sergei S. Pilyugin. Global analysis of age-structured within-host virus model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 1999-2017. doi: 10.3934/dcdsb.2013.18.1999 |
[3] |
Zhikun She, Xin Jiang. Threshold dynamics of a general delayed within-host viral infection model with humoral immunity and two modes of virus transmission. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3835-3861. doi: 10.3934/dcdsb.2020259 |
[4] |
Surabhi Pandey, Ezio Venturino. A TB model: Is disease eradication possible in India?. Mathematical Biosciences & Engineering, 2018, 15 (1) : 233-254. doi: 10.3934/mbe.2018010 |
[5] |
Yilong Li, Shigui Ruan, Dongmei Xiao. The Within-Host dynamics of malaria infection with immune response. Mathematical Biosciences & Engineering, 2011, 8 (4) : 999-1018. doi: 10.3934/mbe.2011.8.999 |
[6] |
Andrei Korobeinikov, Conor Dempsey. A continuous phenotype space model of RNA virus evolution within a host. Mathematical Biosciences & Engineering, 2014, 11 (4) : 919-927. doi: 10.3934/mbe.2014.11.919 |
[7] |
W. E. Fitzgibbon, J. J. Morgan. Analysis of a reaction diffusion model for a reservoir supported spread of infectious disease. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6239-6259. doi: 10.3934/dcdsb.2019137 |
[8] |
C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008 |
[9] |
Min Zhu, Xiaofei Guo, Zhigui Lin. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1565-1583. doi: 10.3934/mbe.2017081 |
[10] |
Wandi Ding. Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 633-659. doi: 10.3934/mbe.2007.4.633 |
[11] |
Qi Deng, Zhipeng Qiu, Ting Guo, Libin Rong. Modeling within-host viral dynamics: The role of CTL immune responses in the evolution of drug resistance. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3543-3562. doi: 10.3934/dcdsb.2020245 |
[12] |
Eduardo Ibargüen-Mondragón, Lourdes Esteva, Edith Mariela Burbano-Rosero. Mathematical model for the growth of Mycobacterium tuberculosis in the granuloma. Mathematical Biosciences & Engineering, 2018, 15 (2) : 407-428. doi: 10.3934/mbe.2018018 |
[13] |
Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1099-1116. doi: 10.3934/mbe.2018049 |
[14] |
Suman Ganguli, David Gammack, Denise E. Kirschner. A Metapopulation Model Of Granuloma Formation In The Lung During Infection With Mycobacterium Tuberculosis. Mathematical Biosciences & Engineering, 2005, 2 (3) : 535-560. doi: 10.3934/mbe.2005.2.535 |
[15] |
Tao Feng, Zhipeng Qiu. Global analysis of a stochastic TB model with vaccination and treatment. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2923-2939. doi: 10.3934/dcdsb.2018292 |
[16] |
Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479 |
[17] |
Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707 |
[18] |
Cristiana J. Silva, Delfim F. M. Torres. A TB-HIV/AIDS coinfection model and optimal control treatment. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4639-4663. doi: 10.3934/dcds.2015.35.4639 |
[19] |
Azizeh Jabbari, Carlos Castillo-Chavez, Fereshteh Nazari, Baojun Song, Hossein Kheiri. A two-strain TB model with multiple latent stages. Mathematical Biosciences & Engineering, 2016, 13 (4) : 741-785. doi: 10.3934/mbe.2016017 |
[20] |
Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 937-956. doi: 10.3934/dcdss.2020055 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]