Citation: |
[1] |
J. Blat and K. J. Brown, Global bifurcation of positive solutions in some system of elliptic equations, SIAM J. Math. Anal., 17 (1986), 1339-1353.doi: 10.1137/0517094. |
[2] |
E. Conway, R. Gardner and J. Smoller, Stability and bifurcation of steady-state solutions for predator-prey equations, Adv. in Appl. Math., 3 (1982), 288-334.doi: 10.1016/S0196-8858(82)80009-2. |
[3] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.doi: 10.1016/0022-1236(71)90015-2. |
[4] |
E. N. Dancer, On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729-743.doi: 10.1090/S0002-9947-1984-0743741-4. |
[5] |
E. N. Dancer, On positive solutions of some pairs of differential equations II, J. Diff. Equat., 60 (1985), 236-258.doi: 10.1016/0022-0396(85)90115-9. |
[6] |
L. R. Fox, Defense and dynamics in plant-herbivore systems, Amer. Zool., 21 (1981), 853-864.doi: 10.1093/icb/21.4.853. |
[7] |
B. D. Hassard, N. D. KazavinoJ and Y. H. Wan, Theory and Applications of the Hopf Bifurcation, Cambridge University Press, Cambridge, MA, 1981. |
[8] |
L. R. Ginzburg, Assuming reproduction to be a function of consumption raises doubts about some popular predator-prey models, J. of Animal Ecology, 67 (1998), 325-327.doi: 10.1046/j.1365-2656.1998.00226.x. |
[9] |
L. Li, Coexistence theorems of steady states for predator-prey interacting systems, Trans. Amer. Math. Soc., 305 (1988), 143-166.doi: 10.1090/S0002-9947-1988-0920151-1. |
[10] |
R. E. Ricklefs, The Economy of Nature, Freeman and Company, New York, 2010. |
[11] |
Y. Su and X. Zou, Transient oscillatory patterns in the diffusive non-local blowfly equation with delay under the zero-flux boundary condition, Nonlinearity, 27 (2014), 87-104.doi: 10.1088/0951-7715/27/1/87. |
[12] |
Y. Yamada, Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions, SIAM J. Math. Anal., 21 (1990), 327-345.doi: 10.1137/0521018. |