• Previous Article
    Delayed population models with Allee effects and exploitation
  • MBE Home
  • This Issue
  • Next Article
    Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach
2015, 12(1): 71-81. doi: 10.3934/mbe.2015.12.71

Dynamics of competitive systems with a single common limiting factor

1. 

Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai Nishi 1-1, Miyazaki 889-2192, Japan

Received  April 2014 Revised  October 2014 Published  December 2014

The concept of limiting factors (or regulating factors) succeeded in formulating the well-known principle of competitive exclusion. This paper shows that the concept of limiting factors is helpful not only to formulate the competitive exclusion principle, but also to obtain other ecological insights. To this end, by focusing on a specific community structure, we study the dynamics of Kolmogorov equations and show that it is possible to derive an ecologically insightful result only from the information about interactions between species and limiting factors. Furthermore, we find that the derived result is a generalization of the preceding work by Shigesada, Kawasaki, and Teramoto (1984), who examined a certain Lotka-Volterra equation in a different context.
Citation: Ryusuke Kon. Dynamics of competitive systems with a single common limiting factor. Mathematical Biosciences & Engineering, 2015, 12 (1) : 71-81. doi: 10.3934/mbe.2015.12.71
References:
[1]

R. A. Armstrong and R. McGehee, Coexistence of species competing for shared resources,, Theoretical Population Biology, 9 (1976), 317.  doi: 10.1016/0040-5809(76)90051-4.  Google Scholar

[2]

R. A. Armstrong and R. McGehee, Coexistence of two competitors on one resource,, Journal of Theoretical Biology, 56 (1976), 499.  doi: 10.1016/S0022-5193(76)80089-6.  Google Scholar

[3]

R. A. Armstrong and R. McGehee, Competitive exclusion,, The American Naturalist, 115 (1980), 151.  doi: 10.1086/283553.  Google Scholar

[4]

M. Hirsch and H. Smith, Monotone dynamical systems,, In A. Canada, II (2005), 239.   Google Scholar

[5]

J. Hofbauer, An index theorem for dissipative semiflows,, Rocky Mountain J. Math., 20 (1990), 1017.  doi: 10.1216/rmjm/1181073059.  Google Scholar

[6]

J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems: Mathematical Aspects of Selection,, Cambridge University Press Cambridge, (1988).   Google Scholar

[7]

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics,, Cambridge University Press, (1998).  doi: 10.1017/CBO9781139173179.  Google Scholar

[8]

R. D. Holt, J. Grover and D. Tilman, Simple rules for interspecific dominance in systems with exploitative and apparent competition,, American Naturalist, 144 (1994), 741.  doi: 10.1086/285705.  Google Scholar

[9]

S. A. Levin, Community equilibria and stability, and an extension of the competitive exclusion principle,, The American Naturalist, 104 (1970), 413.  doi: 10.1086/282676.  Google Scholar

[10]

D. Logofet, Matrices and Graphs: Stability Problems in Mathematical Ecology,, CRC Press, (1993).   Google Scholar

[11]

R. McGehee and R. A. Armstrong, Some mathematical problems concerning the ecological principle of competitive exclusion,, Journal of Differential Equations, 23 (1977), 30.  doi: 10.1016/0022-0396(77)90135-8.  Google Scholar

[12]

J. Moré and W. Rheinboldt, On P- and S-functions and related classes of n-dimensional nonlinear mappings,, Linear Algebra and its Applications, 6 (1973), 45.  doi: 10.1016/0024-3795(73)90006-2.  Google Scholar

[13]

J. J. Moré, Classes of functions and feasibility conditions in nonlinear complementarity problems,, Mathematical Programming, 6 (1974), 327.  doi: 10.1007/BF01580248.  Google Scholar

[14]

F. Scudo and J. Ziegler, Lecture Notes in Biomathematic, volume 22 of Lecture notes in Biomathematics,, Sprinter, (1978).   Google Scholar

[15]

N. Shigesada, K. Kawasaki and E. Teramoto, The effects of interference competition on stability, structure and invasion of a multispecies system,, J. Math. Biol., 21 (1984), 97.  doi: 10.1007/BF00277664.  Google Scholar

[16]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs. American Mathematical Society, (1995).   Google Scholar

[17]

Y. Takeuchi and N. Adachi, The existence of globally stable equilibria of ecosystems of the generalized Volterra type,, J. Math. Biol., 10 (1980), 401.  doi: 10.1007/BF00276098.  Google Scholar

[18]

Y. Takeuchi and N. Adachi, Existence of stable equilibrium point for dynamical systems of Volterra type,, J. Math. Anal. Appl., 79 (1981), 141.  doi: 10.1016/0022-247X(81)90015-9.  Google Scholar

[19]

Y. Takeuchi, N. Adachi and H. Tokumaru, Global stability of ecosystems of the generalized Volterra type,, Math. Biosci., 42 (1978), 119.  doi: 10.1016/0025-5564(78)90010-X.  Google Scholar

[20]

Y. Takeuchi, N. Adachi and H. Tokumaru, The stability of generalized Volterra equations,, J. Math. Anal. Appl., 62 (1978), 453.  doi: 10.1016/0022-247X(78)90139-7.  Google Scholar

show all references

References:
[1]

R. A. Armstrong and R. McGehee, Coexistence of species competing for shared resources,, Theoretical Population Biology, 9 (1976), 317.  doi: 10.1016/0040-5809(76)90051-4.  Google Scholar

[2]

R. A. Armstrong and R. McGehee, Coexistence of two competitors on one resource,, Journal of Theoretical Biology, 56 (1976), 499.  doi: 10.1016/S0022-5193(76)80089-6.  Google Scholar

[3]

R. A. Armstrong and R. McGehee, Competitive exclusion,, The American Naturalist, 115 (1980), 151.  doi: 10.1086/283553.  Google Scholar

[4]

M. Hirsch and H. Smith, Monotone dynamical systems,, In A. Canada, II (2005), 239.   Google Scholar

[5]

J. Hofbauer, An index theorem for dissipative semiflows,, Rocky Mountain J. Math., 20 (1990), 1017.  doi: 10.1216/rmjm/1181073059.  Google Scholar

[6]

J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems: Mathematical Aspects of Selection,, Cambridge University Press Cambridge, (1988).   Google Scholar

[7]

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics,, Cambridge University Press, (1998).  doi: 10.1017/CBO9781139173179.  Google Scholar

[8]

R. D. Holt, J. Grover and D. Tilman, Simple rules for interspecific dominance in systems with exploitative and apparent competition,, American Naturalist, 144 (1994), 741.  doi: 10.1086/285705.  Google Scholar

[9]

S. A. Levin, Community equilibria and stability, and an extension of the competitive exclusion principle,, The American Naturalist, 104 (1970), 413.  doi: 10.1086/282676.  Google Scholar

[10]

D. Logofet, Matrices and Graphs: Stability Problems in Mathematical Ecology,, CRC Press, (1993).   Google Scholar

[11]

R. McGehee and R. A. Armstrong, Some mathematical problems concerning the ecological principle of competitive exclusion,, Journal of Differential Equations, 23 (1977), 30.  doi: 10.1016/0022-0396(77)90135-8.  Google Scholar

[12]

J. Moré and W. Rheinboldt, On P- and S-functions and related classes of n-dimensional nonlinear mappings,, Linear Algebra and its Applications, 6 (1973), 45.  doi: 10.1016/0024-3795(73)90006-2.  Google Scholar

[13]

J. J. Moré, Classes of functions and feasibility conditions in nonlinear complementarity problems,, Mathematical Programming, 6 (1974), 327.  doi: 10.1007/BF01580248.  Google Scholar

[14]

F. Scudo and J. Ziegler, Lecture Notes in Biomathematic, volume 22 of Lecture notes in Biomathematics,, Sprinter, (1978).   Google Scholar

[15]

N. Shigesada, K. Kawasaki and E. Teramoto, The effects of interference competition on stability, structure and invasion of a multispecies system,, J. Math. Biol., 21 (1984), 97.  doi: 10.1007/BF00277664.  Google Scholar

[16]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs. American Mathematical Society, (1995).   Google Scholar

[17]

Y. Takeuchi and N. Adachi, The existence of globally stable equilibria of ecosystems of the generalized Volterra type,, J. Math. Biol., 10 (1980), 401.  doi: 10.1007/BF00276098.  Google Scholar

[18]

Y. Takeuchi and N. Adachi, Existence of stable equilibrium point for dynamical systems of Volterra type,, J. Math. Anal. Appl., 79 (1981), 141.  doi: 10.1016/0022-247X(81)90015-9.  Google Scholar

[19]

Y. Takeuchi, N. Adachi and H. Tokumaru, Global stability of ecosystems of the generalized Volterra type,, Math. Biosci., 42 (1978), 119.  doi: 10.1016/0025-5564(78)90010-X.  Google Scholar

[20]

Y. Takeuchi, N. Adachi and H. Tokumaru, The stability of generalized Volterra equations,, J. Math. Anal. Appl., 62 (1978), 453.  doi: 10.1016/0022-247X(78)90139-7.  Google Scholar

[1]

Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021014

[2]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[3]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[4]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[5]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[6]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[7]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[8]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[11]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[12]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[13]

Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374

[14]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[15]

Chunming Tang, Maozhi Xu, Yanfeng Qi, Mingshuo Zhou. A new class of $ p $-ary regular bent functions. Advances in Mathematics of Communications, 2021, 15 (1) : 55-64. doi: 10.3934/amc.2020042

[16]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[17]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[18]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[19]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[20]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]