• Previous Article
    Optimal design for parameter estimation in EEG problems in a 3D multilayered domain
  • MBE Home
  • This Issue
  • Next Article
    Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions
2015, 12(4): 717-737. doi: 10.3934/mbe.2015.12.717

Traveling bands for the Keller-Segel model with population growth

1. 

Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899

2. 

Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

Received  April 2014 Revised  November 2014 Published  April 2015

This paper is concerned with the existence of the traveling bands to the Keller-Segel model with cell population growth in the form of a chemical uptake kinetics. We find that when the cell growth is considered, the profile of traveling bands, the minimum wave speed and the range of the chemical consumption rate for the existence of traveling wave solutions will change. Our results reveal that collective interaction of cell growth and chemical consumption rate plays an essential role in the generation of traveling bands. The research in the paper provides new insights into the mechanisms underlying the chemotactic pattern formation of wave bands.
Citation: Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences & Engineering, 2015, 12 (4) : 717-737. doi: 10.3934/mbe.2015.12.717
References:
[1]

J. Adler, Chemotaxis in bacteria,, Science, 44 (1975), 341.  doi: 10.1146/annurev.bi.44.070175.002013.  Google Scholar

[2]

J. Adler, Chemoreceptors in bacteria,, Science, 166 (1969), 1588.  doi: 10.1126/science.166.3913.1588.  Google Scholar

[3]

S. Ai, W. Huang and Z. Wang, Reaction, diffusion and chemotaxis in wave propagation,, Dicrete Contin. Dyn. Syst.-Series B, 20 (2015), 1.  doi: 10.3934/dcdsb.2015.20.1.  Google Scholar

[4]

J. Anh and K. Kang, On a keller-segel system with logarithmic sensitivity and non-diffusive chemical,, Dicrete Contin. Dyn. Syst., 34 (2014), 5165.  doi: 10.3934/dcds.2014.34.5165.  Google Scholar

[5]

L. Corrias, B. Perthame and H. Zaag, A chemotaxis model motivated by angiogenesis,, C. R. Acad. Sci. Paris. Ser. I., 336 (2003), 141.  doi: 10.1016/S1631-073X(02)00008-0.  Google Scholar

[6]

L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis system in high space dimensions,, Milan j. Math., 72 (2004), 1.  doi: 10.1007/s00032-003-0026-x.  Google Scholar

[7]

M. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis,, SIAM J. Math. Anal., 33 (2002), 1330.  doi: 10.1137/S0036141001385046.  Google Scholar

[8]

M. Funaki, M. Mimura and T. Tsujikawa, Travelling front solutions arising in the chemotaxis-growth model,, Interfaces Free Bound., 8 (2006), 223.  doi: 10.4171/IFB/141.  Google Scholar

[9]

H. Jin, J. Li and Z. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity,, J. Differential Equations, 255 (2013), 193.  doi: 10.1016/j.jde.2013.04.002.  Google Scholar

[10]

Y. Kalinin, L. Jiang, Y. Tu and M. Wu, Logarithmic sensing in escherichia coli bacterial chemotaxis,, Biophysical Journal, 96 (2009), 2439.  doi: 10.1016/j.bpj.2008.10.027.  Google Scholar

[11]

E. Keller and L. Segel, Traveling bands of chemotactic bacteria: A theorectical analysis,, J. Theor. Biol., 30 (1971), 235.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[12]

C. Kennedy and R. Aris, Traveling waves in a simple population model involving growth and death,, Bull. Math. Biol., 42 (1980), 397.  doi: 10.1007/BF02460793.  Google Scholar

[13]

I. Lapidus and R. Schiller, A model for traveling bands of chemotactic bacteria,, Biophy. J., 22 (1978), 1.  doi: 10.1016/S0006-3495(78)85466-6.  Google Scholar

[14]

D. Lauffenburger, C. Kennedy and R. Aris, Traveling bands of chemotactic bacteria in the context of population growth,, Bull. Math. Biol., 46 (1984), 19.   Google Scholar

[15]

H. Levine, B. Sleeman and M. Nilsen-Hamilton, A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. i. the role of protease inhibitors in preventing angiogenesis,, Math. Biosci, 168 (2000), 71.  doi: 10.1016/S0025-5564(00)00034-1.  Google Scholar

[16]

D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis,, Math. Models Methods Appl. Sci., 21 (2011), 1631.  doi: 10.1142/S0218202511005519.  Google Scholar

[17]

J. Li, T. Li and Z. WAng, Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity,, Math. Models Methods Appl. Sci., 24 (2014), 2819.  doi: 10.1142/S0218202514500389.  Google Scholar

[18]

T. Li and Z. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis,, SIAM J. Appl. Math., 70 (2009), 1522.  doi: 10.1137/09075161X.  Google Scholar

[19]

T. Li and Z. Wang, Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis,, Math. Models Methods Appl. Sci., 20 (2010), 1967.  doi: 10.1142/S0218202510004830.  Google Scholar

[20]

T. Li and Z. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis,, J. Differential Equations, 250 (2011), 1310.  doi: 10.1016/j.jde.2010.09.020.  Google Scholar

[21]

R. Lui and Z. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models,, J. Math. Biol., 61 (2010), 739.  doi: 10.1007/s00285-009-0317-0.  Google Scholar

[22]

G. Nadin, B. Perthame and L. Ryzhik, Traveling waves for the Keller-Segel system with fisher birth terms,, Interfaces Free Bound., 10 (2008), 517.  doi: 10.4171/IFB/200.  Google Scholar

[23]

T. Nagai and T. Ikeda, Traveling waves in a chemotaxis model,, J. Math. Biol., 30 (1991), 169.  doi: 10.1007/BF00160334.  Google Scholar

[24]

R. Nossal, Boundary movement of chemotactic bacterial population,, Math. Biosci., 13 (1972), 397.  doi: 10.1016/0025-5564(72)90058-2.  Google Scholar

[25]

G. Rosen, Analytical solution to the initial-value problem for traveling bands of chemotaxis bacteria,, J. Theor. Biol., 49 (1975), 311.   Google Scholar

[26]

G. Rosen, Steady-state distribution of bacteria chemotactic toward oxygen,, Bull. Math. Biol., 40 (1978), 671.  doi: 10.1007/BF02460738.  Google Scholar

[27]

G. Rosen and S. Baloga, On the stability of steadily propogating bands of chemotactic bacteria,, Math. Biosci., 24 (1975), 273.  doi: 10.1016/0025-5564(75)90080-2.  Google Scholar

[28]

J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan and B. Perthame, Mathematical description of bacterial traveling pulses,, PLoS computational biology, 6 (2010).  doi: 10.1371/journal.pcbi.1000890.  Google Scholar

[29]

J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin and P. Silberzan, Directional persistence of chemotactic bacteria in a traveling concentration wave,, PNAS, 108 (2011), 16235.  doi: 10.1073/pnas.1101996108.  Google Scholar

[30]

H. Schwetlick, Traveling waves for chemotaxis systems,, Proc. Appl. Math. Mech., 3 (2003), 476.  doi: 10.1002/pamm.200310508.  Google Scholar

[31]

C. Walker and G. Webb, Global existence of classical solutions for a haptoaxis model,, SIAM J. Math. Anal., 38 (2006), 1694.  doi: 10.1137/060655122.  Google Scholar

[32]

Z. Wang, Wavefront of an angiogenesis model,, Discrete Contin. Dyn. Syst.-Series B, 17 (2012), 2849.  doi: 10.3934/dcdsb.2012.17.2849.  Google Scholar

[33]

Z. Wang, Mathematics of traveling waves in chemotaxis,, Discrete Contin. Dyn. Syst.-Series B, 18 (2013), 601.  doi: 10.3934/dcdsb.2013.18.601.  Google Scholar

[34]

Z. Wang and T. Hillen, Shock formation in a chemotaxis model,, Math. Methods. Appl. Sci., 31 (2008), 45.  doi: 10.1002/mma.898.  Google Scholar

show all references

References:
[1]

J. Adler, Chemotaxis in bacteria,, Science, 44 (1975), 341.  doi: 10.1146/annurev.bi.44.070175.002013.  Google Scholar

[2]

J. Adler, Chemoreceptors in bacteria,, Science, 166 (1969), 1588.  doi: 10.1126/science.166.3913.1588.  Google Scholar

[3]

S. Ai, W. Huang and Z. Wang, Reaction, diffusion and chemotaxis in wave propagation,, Dicrete Contin. Dyn. Syst.-Series B, 20 (2015), 1.  doi: 10.3934/dcdsb.2015.20.1.  Google Scholar

[4]

J. Anh and K. Kang, On a keller-segel system with logarithmic sensitivity and non-diffusive chemical,, Dicrete Contin. Dyn. Syst., 34 (2014), 5165.  doi: 10.3934/dcds.2014.34.5165.  Google Scholar

[5]

L. Corrias, B. Perthame and H. Zaag, A chemotaxis model motivated by angiogenesis,, C. R. Acad. Sci. Paris. Ser. I., 336 (2003), 141.  doi: 10.1016/S1631-073X(02)00008-0.  Google Scholar

[6]

L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis system in high space dimensions,, Milan j. Math., 72 (2004), 1.  doi: 10.1007/s00032-003-0026-x.  Google Scholar

[7]

M. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis,, SIAM J. Math. Anal., 33 (2002), 1330.  doi: 10.1137/S0036141001385046.  Google Scholar

[8]

M. Funaki, M. Mimura and T. Tsujikawa, Travelling front solutions arising in the chemotaxis-growth model,, Interfaces Free Bound., 8 (2006), 223.  doi: 10.4171/IFB/141.  Google Scholar

[9]

H. Jin, J. Li and Z. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity,, J. Differential Equations, 255 (2013), 193.  doi: 10.1016/j.jde.2013.04.002.  Google Scholar

[10]

Y. Kalinin, L. Jiang, Y. Tu and M. Wu, Logarithmic sensing in escherichia coli bacterial chemotaxis,, Biophysical Journal, 96 (2009), 2439.  doi: 10.1016/j.bpj.2008.10.027.  Google Scholar

[11]

E. Keller and L. Segel, Traveling bands of chemotactic bacteria: A theorectical analysis,, J. Theor. Biol., 30 (1971), 235.  doi: 10.1016/0022-5193(71)90051-8.  Google Scholar

[12]

C. Kennedy and R. Aris, Traveling waves in a simple population model involving growth and death,, Bull. Math. Biol., 42 (1980), 397.  doi: 10.1007/BF02460793.  Google Scholar

[13]

I. Lapidus and R. Schiller, A model for traveling bands of chemotactic bacteria,, Biophy. J., 22 (1978), 1.  doi: 10.1016/S0006-3495(78)85466-6.  Google Scholar

[14]

D. Lauffenburger, C. Kennedy and R. Aris, Traveling bands of chemotactic bacteria in the context of population growth,, Bull. Math. Biol., 46 (1984), 19.   Google Scholar

[15]

H. Levine, B. Sleeman and M. Nilsen-Hamilton, A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. i. the role of protease inhibitors in preventing angiogenesis,, Math. Biosci, 168 (2000), 71.  doi: 10.1016/S0025-5564(00)00034-1.  Google Scholar

[16]

D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis,, Math. Models Methods Appl. Sci., 21 (2011), 1631.  doi: 10.1142/S0218202511005519.  Google Scholar

[17]

J. Li, T. Li and Z. WAng, Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity,, Math. Models Methods Appl. Sci., 24 (2014), 2819.  doi: 10.1142/S0218202514500389.  Google Scholar

[18]

T. Li and Z. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis,, SIAM J. Appl. Math., 70 (2009), 1522.  doi: 10.1137/09075161X.  Google Scholar

[19]

T. Li and Z. Wang, Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis,, Math. Models Methods Appl. Sci., 20 (2010), 1967.  doi: 10.1142/S0218202510004830.  Google Scholar

[20]

T. Li and Z. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis,, J. Differential Equations, 250 (2011), 1310.  doi: 10.1016/j.jde.2010.09.020.  Google Scholar

[21]

R. Lui and Z. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models,, J. Math. Biol., 61 (2010), 739.  doi: 10.1007/s00285-009-0317-0.  Google Scholar

[22]

G. Nadin, B. Perthame and L. Ryzhik, Traveling waves for the Keller-Segel system with fisher birth terms,, Interfaces Free Bound., 10 (2008), 517.  doi: 10.4171/IFB/200.  Google Scholar

[23]

T. Nagai and T. Ikeda, Traveling waves in a chemotaxis model,, J. Math. Biol., 30 (1991), 169.  doi: 10.1007/BF00160334.  Google Scholar

[24]

R. Nossal, Boundary movement of chemotactic bacterial population,, Math. Biosci., 13 (1972), 397.  doi: 10.1016/0025-5564(72)90058-2.  Google Scholar

[25]

G. Rosen, Analytical solution to the initial-value problem for traveling bands of chemotaxis bacteria,, J. Theor. Biol., 49 (1975), 311.   Google Scholar

[26]

G. Rosen, Steady-state distribution of bacteria chemotactic toward oxygen,, Bull. Math. Biol., 40 (1978), 671.  doi: 10.1007/BF02460738.  Google Scholar

[27]

G. Rosen and S. Baloga, On the stability of steadily propogating bands of chemotactic bacteria,, Math. Biosci., 24 (1975), 273.  doi: 10.1016/0025-5564(75)90080-2.  Google Scholar

[28]

J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan and B. Perthame, Mathematical description of bacterial traveling pulses,, PLoS computational biology, 6 (2010).  doi: 10.1371/journal.pcbi.1000890.  Google Scholar

[29]

J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin and P. Silberzan, Directional persistence of chemotactic bacteria in a traveling concentration wave,, PNAS, 108 (2011), 16235.  doi: 10.1073/pnas.1101996108.  Google Scholar

[30]

H. Schwetlick, Traveling waves for chemotaxis systems,, Proc. Appl. Math. Mech., 3 (2003), 476.  doi: 10.1002/pamm.200310508.  Google Scholar

[31]

C. Walker and G. Webb, Global existence of classical solutions for a haptoaxis model,, SIAM J. Math. Anal., 38 (2006), 1694.  doi: 10.1137/060655122.  Google Scholar

[32]

Z. Wang, Wavefront of an angiogenesis model,, Discrete Contin. Dyn. Syst.-Series B, 17 (2012), 2849.  doi: 10.3934/dcdsb.2012.17.2849.  Google Scholar

[33]

Z. Wang, Mathematics of traveling waves in chemotaxis,, Discrete Contin. Dyn. Syst.-Series B, 18 (2013), 601.  doi: 10.3934/dcdsb.2013.18.601.  Google Scholar

[34]

Z. Wang and T. Hillen, Shock formation in a chemotaxis model,, Math. Methods. Appl. Sci., 31 (2008), 45.  doi: 10.1002/mma.898.  Google Scholar

[1]

Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027

[2]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[3]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[4]

Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040

[5]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[6]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[7]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[8]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[9]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[10]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[11]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[12]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[13]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[14]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[15]

Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261

[16]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[17]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[18]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[19]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[20]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]