Citation: |
[1] |
I. Akduman and R. Kress, Electrostatic imaging via conformal mapping, Inverse Problems, 18 (2002), 1659-1672.doi: 10.1088/0266-5611/18/6/315. |
[2] |
K. Adoteye, H. T. Banks and K. B. Flores, Optimal design of non-equilibrium experiments for genetic network interrogation, Applied Math Letters, 40 (2015), 84-89.doi: 10.1016/j.aml.2014.09.013. |
[3] |
R. A. Albanese, R. L. Medina and J. W. Penn, Mathematics, medicine and microwaves, Inverse Problems, 10 (1994), 995-1007.doi: 10.1088/0266-5611/10/5/001. |
[4] |
R. A. Albanese, J. W. Penn and R. L. Medina, Short-rise-time microwave pulse propagation through dispersive biological media, J. Optical Society of America A, 6 (1989), 1441-1446.doi: 10.1364/JOSAA.6.001441. |
[5] |
N. D. Aparicio and M. K. Pidcock, The boundary inverse problem for the Laplace equation in two dimensions, Inverse Problems, 12 (1996), 565-577.doi: 10.1088/0266-5611/12/5/003. |
[6] |
H. T. Banks, R. Baraldi, K. Cross, K. B. Flores, C. McChesney, L. Poag and E. Thorpe, Uncertainty quantification in modeling HIV viral mechanics. CRSC-TR13-16, Center for Research in Scientific Computation, North Carolina State University, 2013. Mathematical Biosciences and Engineering (Submitted). |
[7] |
H. T. Banks, J. E. Banks, K. Link, J. A. Rosenheim, C. Ross and K. A. Tillman, Model comparison tests to determine data information content, Applied Math Letters, 43 (2015), 10-18.doi: 10.1016/j.aml.2014.11.002. |
[8] |
H. T. Banks, M. W. Buksas and T. Lin, Electromagnetic Material Interrogation Using Conductive Interfaces and Acoustic Wavefronts, Frontiers in Applied Mathematics, Vol. FR21, SIAM, Philadelphia, PA, 2000.doi: 10.1137/1.9780898719871. |
[9] |
H. T. Banks, S. Dediu and S. L. Ernstberger, Sensitivity functions and their uses in inverse problems, J. Inverse and Ill-posed Problems, 15 (2007), 683-708.doi: 10.1515/jiip.2007.038. |
[10] |
H. T. Banks, S. Dediu, S. L. Ernstberger and F. Kappel, A new optimal approach to optimal design problem, J. Inverse and Ill-posed Problems, 18 (2010), 25-83.doi: 10.1515/JIIP.2010.002. |
[11] |
H. T. Banks, M. Doumic, C. Kruse, S. Prigent and H. Rezaei, Information content in data sets for a nucleated-polymerization model, CRSC-TR14-15, N. C. State University, Raleigh, NC, November, 2014; J. Biological Dynamics, submitted. |
[12] |
H. T. Banks, K. Holm and F. Kappel, Comparison of optimal design methods in inverse problems, Inverse Problems, 27 (2011), 075002, 31pp.doi: 10.1088/0266-5611/27/7/075002. |
[13] |
H. T. Banks, S. Hu and W. C. Thompson, Modeling and Inverse Problems in the Presence of Uncertainty, CRC Press, Boca Raton, FL., 2014. |
[14] |
H. T. Banks and F. Kojima, Boundary shape identification in two-dimensional electrostatic problems using SQUIDs, J. Inverse and Ill-Posed Problems, 8 (2000), 487-504.doi: 10.1515/jiip.2000.8.5.487. |
[15] |
H. T. Banks and K. L. Rehm, Experimental design for vector output systems, Inverse Problems in Sci. and Engr., 22 (2014), 557-590.doi: 10.1016/j.aml.2012.08.003. |
[16] |
H. T. Banks and K. L. Rehm, Experimental design for distributed parameter vector systems, Applied Mathematics Letters, 26 (2013), 10-14.doi: 10.1016/j.aml.2012.08.003. |
[17] |
H. T. Banks, D. Rubio, N. Saintier and M. I. Troparevsky, Optimal design techniques for distributed parameter systems, CRSC-TR13-01, N. C. State University, Raleigh, NC, January, 2013; Proceedings 2013 SIAM Conference on Control Theory, CT13, SIAM, (2013), 83-90. |
[18] |
H. T. Banks, D. Rubio, N. Saintier and M. I. Troparevsky, Optimal electrode positions for the inverse problem of EEG in a simplified model in 3D, MACI, 4 (2013), 521-524. ISSN 2314-3282. |
[19] |
R. Baraldi, K. Cross, C. McChesney, L. Poag, E. Thorpe, K. B. Flores and H. T. Banks, Uncertainty quantification for a model of HIV-1 patient response to antiretroviral therapy interruptions, Proceedings of the American Control Conference, (2014), 2753-2758.doi: 10.1109/ACC.2014.6858714. |
[20] |
F. Ben Hassen, Y. Boukari and H. Haddar, Inverse impedance boundary problem via the conformal mapping method: the case of small impedances, Revue ARIMA, 13 (2010), 47-62. |
[21] |
M. Clerc, J. Leblond, J.-P. Marmorat and T. Papadopoulo, Source localization using rational approximation on plane sections, Inverse Problems, 28 (2012), 1-24.doi: 10.1088/0266-5611/28/5/055018. |
[22] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer Applied Mathematical Sciences, Vol. 93, 3rd ed., Springer Verlag, 2013.doi: 10.1007/978-1-4614-4942-3. |
[23] |
D. Colton, R. Kress and P. Monk, A new algorithm in electromagnetic inverse scattering theory with an application to medical imaging, Math Methods Applied Science, 20 (1997), 385-401.doi: 10.1002/(SICI)1099-1476(19970325)20:5<385::AID-MMA815>3.0.CO;2-Y. |
[24] |
J. C. de Munck, The potential distribution in a layered anisotropic spheroidal volume conductor, J. Appl. Phys., 64 (1988), 464-470. |
[25] |
J. C. de Munck, H. Huizenga, L. J. Waldrop and R. M. Heethaar, Estimating stationary dipoles from MEG/EEG data contaminated with spatially and temporal correlated background noise, IEEE Trans. On Signal Processing, 50 (2002), 1565-1572. |
[26] |
A. El Badia, A inverse source problem in an anisotropic medium by boundary measurements, Inverse Problems, 16 (2000), 651-663.doi: 10.1088/0266-5611/16/3/308. |
[27] |
A. El Badia, Summary of some results on an EEG inverse problem, Neurology and Clinical Neurophysiology, 2004 (2004), 102. |
[28] |
A. El Badia and M. Farah, Identification of dipole sources in an elliptic equation from boundary measurements: Application to the inverse EEG problem, J. Inv. Ill-Posed Problems, 14 (2006), 331-353.doi: 10.1515/156939406777571012. |
[29] |
C. Gabriel, S. Gabriel and E. Corthout, The dielectric properties of biological tissues: I. Literature survey, Phys. Med. Biol., 41 (1996), 2231-2249.doi: 10.1088/0031-9155/41/11/001. |
[30] |
S. Gabriel, R. W. Lau and C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol., 41 (1996), 2251-2269.doi: 10.1088/0031-9155/41/11/002. |
[31] |
S. Gabriel, R. W. Lau and C. Gabriel, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues, Phys. Med. Biol., 41 (1996), 2271-2293.doi: 10.1088/0031-9155/41/11/003. |
[32] |
M. Hamalainen, R. Hari, R.J. Ilmoniemi, J. Knuutila and O. Lounasmaa, Magnetoencephalography, theory, instrumentation and applications to noninvasive studies of the working human brain, Reviews of Modern Physics, 65 (1993), 414-487. |
[33] |
H. Huizenga, J. C. de Munck, L. J. Waldrop and R. P. Grasman, Spatiotemporal EEG/MEG source analysis based on a parametric noise covariance model, IEEE Trans. Biomedical Engineering, 49 (2002), 533-539.doi: 10.1109/TBME.2002.1001967. |
[34] |
R. Kress, Inverse Dirichlet problem and conformal mapping, Mathematics and Computers in Simulation, 66 (2004), 255-265.doi: 10.1016/j.matcom.2004.02.006. |
[35] |
R. Kress and W. Rundell, Nonlinear integral equations and the iterative solution for an inverse boundary value problem, Inverse Problems, 21 (2005), 1207-1223.doi: 10.1088/0266-5611/21/4/002. |
[36] |
J. C. Mosher, R. M. Leahy and P. S. Lewis, EEG and MEG: Forward solutions for inverse methods, Trans. Biomedical Engineering, 46 (1999), 245-259.doi: 10.1109/10.748978. |
[37] |
D. Rubio and M. I. Troparevsky, The EEG forward problem: Theoretical and numerical aspects, Latin American Applied Research, 36 (2006), 87-92. |
[38] |
J. Sarvas, Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem, Phy. Med Biol., 32 (1987), 11-22.doi: 10.1088/0031-9155/32/1/004. |
[39] |
P. H. Schimpf, C. Ramon and J. Haneisen, Dipole models for EEG and MEG, IEEE Trans. Biomedical Engineering, 49 (2002), 409-418.doi: 10.1109/10.995679. |
[40] |
G. A. F. Seber and C. J. Wild, Nonlinear Regression, John Wiley & Sons, Inc., New York, 1989.doi: 10.1002/0471725315. |
[41] |
M. I. Troparevsky and D. Rubio, On the weak solutions of the forward problem in EEG, J. of Applied Mathematics, 12 (2003), 647-656.doi: 10.1155/S1110757X03305030. |
[42] |
M. I. Troparevsky and D. Rubio, Weak solutions of the forward problem in EEG for different conductivity values, Mathematical and Computer Modeling, 41 (2005), 1437-1443.doi: 10.1016/j.mcm.2004.02.037. |
[43] |
I. S. Yetik, A. Nehorai, C. H. Muravchik and J. Haueisen, Line-source modeling and estimation with magnetoencephalography, IEEE Trans. Biomed. Eng., 2 (2004), 1339-1342.doi: 10.1109/ISBI.2004.1398794. |