-
Previous Article
Global stability for the prion equation with general incidence
- MBE Home
- This Issue
-
Next Article
Optimal design for parameter estimation in EEG problems in a 3D multilayered domain
A nosocomial epidemic model with infection of patients due to contaminated rooms
1. | Mathematics Department, Vanderbilt University, Nashville, TN 37240, United States, United States |
References:
[1] |
M. Bani-Yaghoub, R. Gautam, Z. Shuai, P. van den Driessche and R. Ivanek, Reproduction numbers for infections with free-living pathogens growing in the environment,, Journal of biological dynamics, 6 (2012), 923. Google Scholar |
[2] |
H. Freedman, S. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set,, Journal of Dynamics and Differential Equations, 6 (1994), 583.
doi: 10.1007/BF02218848. |
[3] |
D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions,, The journal of physical chemistry, 81 (1977), 2340.
doi: 10.1021/j100540a008. |
[4] |
E. S. McBryde and D. L. McElwain, A mathematical model investigating the impact of an environmental reservoir on the prevalence and control of vancomycin-resistant enterococci,, Journal of Infectious Diseases, 193 (2006), 1473.
doi: 10.1086/503439. |
[5] |
M. McKenna, Clean sweep,, Scientific American, 307 (2012), 30.
doi: 10.1038/scientificamerican0912-30. |
[6] |
D. J. Morgan, E. Rogawski, K. A. Thom, J. K. Johnson, E. N. Perencevich, M. Shardell, S. Leekha and A. D. Harris, Transfer of multidrug-resistant bacteria to healthcare workers? gloves and gowns after patient contact increases with environmental contamination,, Critical care medicine, 40 (2012), 1045.
doi: 10.1097/CCM.0b013e31823bc7c8. |
[7] |
S. Nseir, C. Blazejewski, R. Lubret, F. Wallet, R. Courcol and A. Durocher, Risk of acquiring multidrug-resistant gram-negative bacilli from prior room occupants in the intensive care unit,, Clinical Microbiology and Infection, 17 (2011), 1201.
doi: 10.1111/j.1469-0691.2010.03420.x. |
[8] |
W. H. Organization et al., Antimicrobial Resistance: Global Report on Surveillance 2014., geneva, (2014). Google Scholar |
[9] |
S. Petti, G. A. Messano, A. Polimeni and S. J. Dancer, Effect of cleaning and disinfection on naturally contaminated clinical contact surfaces,, Acta stomatologica Naissi, 29 (2013), 1265.
doi: 10.5937/asn1367265P. |
[10] |
N. Plipat, I. H. Spicknall, J. S. Koopman and J. N. Eisenberg, The dynamics of methicillin-resistant staphylococcus aureus exposure in a hospital model and the potential for environmental intervention,, BMC infectious diseases, 13 (2013).
doi: 10.1186/1471-2334-13-595. |
[11] |
Z. Shuai, J. Heesterbeek and P. van den Driessche, Extending the type reproduction number to infectious disease control targeting contacts between types,, Journal of mathematical biology, 67 (2013), 1067.
doi: 10.1007/s00285-012-0579-9. |
[12] |
Z. Shuai and P. van den Driessche, Global stability of infectious disease models using lyapunov functions,, SIAM Journal on Applied Mathematics, 73 (2013), 1513.
doi: 10.1137/120876642. |
[13] |
H. L. Smith, The Theory of the Chemostat: Dynamics of Microbial Competition, vol. 13,, Cambridge university press, (1995).
doi: 10.1017/CBO9780511530043. |
[14] |
P. Strassle, K. A. Thom, J. K. Johnsonm, S. Leekha, M. Lissauer, J. Zhu and A. D. Harris, The effect of terminal cleaning on environmental contamination rates of multidrug-resistant< i> acinetobacter baumannii< /i>,, American journal of infection control, 40 (2012), 1005. Google Scholar |
[15] |
PBS, PBS frontline: Hunting the nightmare bacteria, 2013,, URL , (). Google Scholar |
[16] |
P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical biosciences, 180 (2002), 29.
doi: 10.1016/S0025-5564(02)00108-6. |
[17] |
X. Wang, Y. Xiao, J. Wang and X. Lu, A mathematical model of effects of environmental contamination and presence of volunteers on hospital infections in china,, Journal of theoretical biology, 293 (2012), 161.
doi: 10.1016/j.jtbi.2011.10.009. |
[18] |
X. Wang, Y. Xiao, J. Wang and X. Lu, Stochastic disease dynamics of a hospital infection model,, Mathematical biosciences, 241 (2013), 115.
doi: 10.1016/j.mbs.2012.10.002. |
[19] |
M. Wolkewitz, M. Dettenkofer, H. Bertz, M. Schumacher and J. Huebner, Environmental contamination as an important route for the transmission of the hospital pathogen vre: modeling and prediction of classical interventions,, Infectious Diseases: Research and Treatment, 1 (2008), 3. Google Scholar |
show all references
References:
[1] |
M. Bani-Yaghoub, R. Gautam, Z. Shuai, P. van den Driessche and R. Ivanek, Reproduction numbers for infections with free-living pathogens growing in the environment,, Journal of biological dynamics, 6 (2012), 923. Google Scholar |
[2] |
H. Freedman, S. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set,, Journal of Dynamics and Differential Equations, 6 (1994), 583.
doi: 10.1007/BF02218848. |
[3] |
D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions,, The journal of physical chemistry, 81 (1977), 2340.
doi: 10.1021/j100540a008. |
[4] |
E. S. McBryde and D. L. McElwain, A mathematical model investigating the impact of an environmental reservoir on the prevalence and control of vancomycin-resistant enterococci,, Journal of Infectious Diseases, 193 (2006), 1473.
doi: 10.1086/503439. |
[5] |
M. McKenna, Clean sweep,, Scientific American, 307 (2012), 30.
doi: 10.1038/scientificamerican0912-30. |
[6] |
D. J. Morgan, E. Rogawski, K. A. Thom, J. K. Johnson, E. N. Perencevich, M. Shardell, S. Leekha and A. D. Harris, Transfer of multidrug-resistant bacteria to healthcare workers? gloves and gowns after patient contact increases with environmental contamination,, Critical care medicine, 40 (2012), 1045.
doi: 10.1097/CCM.0b013e31823bc7c8. |
[7] |
S. Nseir, C. Blazejewski, R. Lubret, F. Wallet, R. Courcol and A. Durocher, Risk of acquiring multidrug-resistant gram-negative bacilli from prior room occupants in the intensive care unit,, Clinical Microbiology and Infection, 17 (2011), 1201.
doi: 10.1111/j.1469-0691.2010.03420.x. |
[8] |
W. H. Organization et al., Antimicrobial Resistance: Global Report on Surveillance 2014., geneva, (2014). Google Scholar |
[9] |
S. Petti, G. A. Messano, A. Polimeni and S. J. Dancer, Effect of cleaning and disinfection on naturally contaminated clinical contact surfaces,, Acta stomatologica Naissi, 29 (2013), 1265.
doi: 10.5937/asn1367265P. |
[10] |
N. Plipat, I. H. Spicknall, J. S. Koopman and J. N. Eisenberg, The dynamics of methicillin-resistant staphylococcus aureus exposure in a hospital model and the potential for environmental intervention,, BMC infectious diseases, 13 (2013).
doi: 10.1186/1471-2334-13-595. |
[11] |
Z. Shuai, J. Heesterbeek and P. van den Driessche, Extending the type reproduction number to infectious disease control targeting contacts between types,, Journal of mathematical biology, 67 (2013), 1067.
doi: 10.1007/s00285-012-0579-9. |
[12] |
Z. Shuai and P. van den Driessche, Global stability of infectious disease models using lyapunov functions,, SIAM Journal on Applied Mathematics, 73 (2013), 1513.
doi: 10.1137/120876642. |
[13] |
H. L. Smith, The Theory of the Chemostat: Dynamics of Microbial Competition, vol. 13,, Cambridge university press, (1995).
doi: 10.1017/CBO9780511530043. |
[14] |
P. Strassle, K. A. Thom, J. K. Johnsonm, S. Leekha, M. Lissauer, J. Zhu and A. D. Harris, The effect of terminal cleaning on environmental contamination rates of multidrug-resistant< i> acinetobacter baumannii< /i>,, American journal of infection control, 40 (2012), 1005. Google Scholar |
[15] |
PBS, PBS frontline: Hunting the nightmare bacteria, 2013,, URL , (). Google Scholar |
[16] |
P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical biosciences, 180 (2002), 29.
doi: 10.1016/S0025-5564(02)00108-6. |
[17] |
X. Wang, Y. Xiao, J. Wang and X. Lu, A mathematical model of effects of environmental contamination and presence of volunteers on hospital infections in china,, Journal of theoretical biology, 293 (2012), 161.
doi: 10.1016/j.jtbi.2011.10.009. |
[18] |
X. Wang, Y. Xiao, J. Wang and X. Lu, Stochastic disease dynamics of a hospital infection model,, Mathematical biosciences, 241 (2013), 115.
doi: 10.1016/j.mbs.2012.10.002. |
[19] |
M. Wolkewitz, M. Dettenkofer, H. Bertz, M. Schumacher and J. Huebner, Environmental contamination as an important route for the transmission of the hospital pathogen vre: modeling and prediction of classical interventions,, Infectious Diseases: Research and Treatment, 1 (2008), 3. Google Scholar |
[1] |
A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020441 |
[2] |
Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303 |
[3] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[4] |
Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020378 |
[5] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[6] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[7] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[8] |
Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 |
[9] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[10] |
Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028 |
[11] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
[12] |
Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061 |
[13] |
Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048 |
[14] |
Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309 |
[15] |
Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020431 |
[16] |
Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328 |
[17] |
Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261 |
[18] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[19] |
Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268 |
[20] |
Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021027 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]