2015, 12(4): 859-877. doi: 10.3934/mbe.2015.12.859

Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function

1. 

School of Science and Technology, Zhejiang International Studies University, Hangzhou 310012, China

2. 

Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250

3. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

Received  April 2014 Revised  December 2014 Published  April 2015

In this paper, we study an age-structured virus dynamics model with Beddington-DeAngelis infection function. An explicit formula for the basic reproductive number $\mathcal{R}_{0}$ of the model is obtained. We investigate the global behavior of the model in terms of $\mathcal{R}_{0}$: if $\mathcal{R}_{0}\leq1$, then the infection-free equilibrium is globally asymptotically stable, whereas if $\mathcal{R}_{0}>1$, then the infection equilibrium is globally asymptotically stable. Finally, some special cases, which reduce to some known HIV infection models studied by other researchers, are considered.
Citation: Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859
References:
[1]

C. L. Althaus and R. J. De Boer, Dynamics of immune escape during HIV/SIV infection,, PLoS Comput. Biol., 4 (2008).  doi: 10.1371/journal.pcbi.1000103.  Google Scholar

[2]

F. Brauer, Z. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model,, Math. Biosci. Eng., 10 (2013), 1335.  doi: 10.3934/mbe.2013.10.1335.  Google Scholar

[3]

C. J. Browne and S. S. Pilyugin, Global analysis of age-structured within-host virus model,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1999.  doi: 10.3934/dcdsb.2013.18.1999.  Google Scholar

[4]

R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4$^+$ T-cells,, Math. Biosci., 165 (2000), 27.  doi: 10.1016/S0025-5564(00)00006-7.  Google Scholar

[5]

C. Cosner, D.L. DeAngelis, J. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators,, Theoret. Pop. Biol., 56 (1999), 65.  doi: 10.1006/tpbi.1999.1414.  Google Scholar

[6]

R. J. De Boer and A. S. Perelson, Target cell limited and immune control models of HIV infection: A comparison,, J. Theoret. Biol., 190 (1998), 201.   Google Scholar

[7]

R. D. Demasse and A. Ducrot, An age-structured within-host model for multistrain malaria infections,, SIAM. J. Appl. Math., 73 (2013), 572.  doi: 10.1137/120890351.  Google Scholar

[8]

P. De Leenheer and H. L. Smith, Virus dynamics: A global analysis,, SIAM J. Appl. Math., 63 (2003), 1313.  doi: 10.1137/S0036139902406905.  Google Scholar

[9]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs Vol 25, (1988).   Google Scholar

[10]

J. K. Hale and P. Waltman, Persistence in infinite dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388.  doi: 10.1137/0520025.  Google Scholar

[11]

G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 22 (2009), 1690.  doi: 10.1016/j.aml.2009.06.004.  Google Scholar

[12]

G. Huang, W. Ma and Y. Takeuchi, Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 24 (2011), 1199.  doi: 10.1016/j.aml.2011.02.007.  Google Scholar

[13]

G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections,, SIAM J. Appl. Math., 70 (2010), 2693.  doi: 10.1137/090780821.  Google Scholar

[14]

G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model,, SIAM J. Appl. Math., 72 (2012), 25.  doi: 10.1137/110826588.  Google Scholar

[15]

G. Huisman and R. J. De Boer, A formal derivation of the "Beddington" functional response,, J. Theoret. Biol., 185 (1997), 389.  doi: 10.1006/jtbi.1996.0318.  Google Scholar

[16]

D. Kirschner and G. F. Webb, A model for treatment strategy in the chemotherapy of AIDS,, Bull. Math. Biol., 58 (1996), 367.  doi: 10.1016/0092-8240(95)00345-2.  Google Scholar

[17]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bull. Math. Biol., 72 (2010), 1492.  doi: 10.1007/s11538-010-9503-x.  Google Scholar

[18]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434.  doi: 10.1137/090779322.  Google Scholar

[19]

P. Magal, Compact attractors for time-periodic age-structured population models,, Electron. J. Differential Equations, 65 (2001), 1.   Google Scholar

[20]

P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109.  doi: 10.1080/00036810903208122.  Google Scholar

[21]

P. Magal and C. C. McCluskey, Two-group infection age model including an application to nosocomial infection,, SIAM J. Appl. Math., 73 (2013), 1058.  doi: 10.1137/120882056.  Google Scholar

[22]

P. Magal and H. R. Thieme, Eventual compactness for semiflows generated by nonlinear age-structured models,, Commun. Pure Appl. Anal., 3 (2004), 695.  doi: 10.3934/cpaa.2004.3.695.  Google Scholar

[23]

C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes,, Math. Biosci. Eng., 9 (2012), 819.  doi: 10.3934/mbe.2012.9.819.  Google Scholar

[24]

P. W. Nelson, M. A. Gilchrist, D. Coombs, J. M. Hyman and A. S. Perelson, An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells,, Math. Biosci. Eng., 1 (2004), 267.  doi: 10.3934/mbe.2004.1.267.  Google Scholar

[25]

A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses,, Science, 272 (1996), 74.  doi: 10.1126/science.272.5258.74.  Google Scholar

[26]

M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology,, Oxford University Press, (2000).   Google Scholar

[27]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3.  doi: 10.1137/S0036144598335107.  Google Scholar

[28]

L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy,, SIAM. J. Appl. Math., 67 (2007), 731.  doi: 10.1137/060663945.  Google Scholar

[29]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators,, Differential Integral Equations, 3 (1990), 1035.   Google Scholar

show all references

References:
[1]

C. L. Althaus and R. J. De Boer, Dynamics of immune escape during HIV/SIV infection,, PLoS Comput. Biol., 4 (2008).  doi: 10.1371/journal.pcbi.1000103.  Google Scholar

[2]

F. Brauer, Z. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model,, Math. Biosci. Eng., 10 (2013), 1335.  doi: 10.3934/mbe.2013.10.1335.  Google Scholar

[3]

C. J. Browne and S. S. Pilyugin, Global analysis of age-structured within-host virus model,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1999.  doi: 10.3934/dcdsb.2013.18.1999.  Google Scholar

[4]

R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4$^+$ T-cells,, Math. Biosci., 165 (2000), 27.  doi: 10.1016/S0025-5564(00)00006-7.  Google Scholar

[5]

C. Cosner, D.L. DeAngelis, J. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators,, Theoret. Pop. Biol., 56 (1999), 65.  doi: 10.1006/tpbi.1999.1414.  Google Scholar

[6]

R. J. De Boer and A. S. Perelson, Target cell limited and immune control models of HIV infection: A comparison,, J. Theoret. Biol., 190 (1998), 201.   Google Scholar

[7]

R. D. Demasse and A. Ducrot, An age-structured within-host model for multistrain malaria infections,, SIAM. J. Appl. Math., 73 (2013), 572.  doi: 10.1137/120890351.  Google Scholar

[8]

P. De Leenheer and H. L. Smith, Virus dynamics: A global analysis,, SIAM J. Appl. Math., 63 (2003), 1313.  doi: 10.1137/S0036139902406905.  Google Scholar

[9]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs Vol 25, (1988).   Google Scholar

[10]

J. K. Hale and P. Waltman, Persistence in infinite dimensional systems,, SIAM J. Math. Anal., 20 (1989), 388.  doi: 10.1137/0520025.  Google Scholar

[11]

G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 22 (2009), 1690.  doi: 10.1016/j.aml.2009.06.004.  Google Scholar

[12]

G. Huang, W. Ma and Y. Takeuchi, Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 24 (2011), 1199.  doi: 10.1016/j.aml.2011.02.007.  Google Scholar

[13]

G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections,, SIAM J. Appl. Math., 70 (2010), 2693.  doi: 10.1137/090780821.  Google Scholar

[14]

G. Huang, X. Liu and Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model,, SIAM J. Appl. Math., 72 (2012), 25.  doi: 10.1137/110826588.  Google Scholar

[15]

G. Huisman and R. J. De Boer, A formal derivation of the "Beddington" functional response,, J. Theoret. Biol., 185 (1997), 389.  doi: 10.1006/jtbi.1996.0318.  Google Scholar

[16]

D. Kirschner and G. F. Webb, A model for treatment strategy in the chemotherapy of AIDS,, Bull. Math. Biol., 58 (1996), 367.  doi: 10.1016/0092-8240(95)00345-2.  Google Scholar

[17]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bull. Math. Biol., 72 (2010), 1492.  doi: 10.1007/s11538-010-9503-x.  Google Scholar

[18]

M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections,, SIAM J. Appl. Math., 70 (2010), 2434.  doi: 10.1137/090779322.  Google Scholar

[19]

P. Magal, Compact attractors for time-periodic age-structured population models,, Electron. J. Differential Equations, 65 (2001), 1.   Google Scholar

[20]

P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109.  doi: 10.1080/00036810903208122.  Google Scholar

[21]

P. Magal and C. C. McCluskey, Two-group infection age model including an application to nosocomial infection,, SIAM J. Appl. Math., 73 (2013), 1058.  doi: 10.1137/120882056.  Google Scholar

[22]

P. Magal and H. R. Thieme, Eventual compactness for semiflows generated by nonlinear age-structured models,, Commun. Pure Appl. Anal., 3 (2004), 695.  doi: 10.3934/cpaa.2004.3.695.  Google Scholar

[23]

C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes,, Math. Biosci. Eng., 9 (2012), 819.  doi: 10.3934/mbe.2012.9.819.  Google Scholar

[24]

P. W. Nelson, M. A. Gilchrist, D. Coombs, J. M. Hyman and A. S. Perelson, An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells,, Math. Biosci. Eng., 1 (2004), 267.  doi: 10.3934/mbe.2004.1.267.  Google Scholar

[25]

A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses,, Science, 272 (1996), 74.  doi: 10.1126/science.272.5258.74.  Google Scholar

[26]

M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology,, Oxford University Press, (2000).   Google Scholar

[27]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo,, SIAM Rev., 41 (1999), 3.  doi: 10.1137/S0036144598335107.  Google Scholar

[28]

L. Rong, Z. Feng and A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy,, SIAM. J. Appl. Math., 67 (2007), 731.  doi: 10.1137/060663945.  Google Scholar

[29]

H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators,, Differential Integral Equations, 3 (1990), 1035.   Google Scholar

[1]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[2]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[3]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[4]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[5]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[6]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[7]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[8]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[9]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[10]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[11]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[12]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[13]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[14]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[15]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[18]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[19]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[20]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (22)

Other articles
by authors

[Back to Top]