\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Thermal detection of a prevascular tumor embedded in breast tissue

Abstract Related Papers Cited by
  • This paper presents a mathematical model of heat transfer in a prevascular breast tumor. The model uses the steady state temperature of the breast at the skin surface to determine whether there is an underlying tumor and if so, verifies whether the tumor is growing or dormant. The model is governed by the Pennes equations and we present numerical simulations for versions of the model in two and three dimensions.
    Mathematics Subject Classification: Primary: 80A20, 92C05; Secondary: 92C30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. P. Agnelli, A. A. Barrea and C. V. Turner, Tumor location and parameter estimation by thermography, Mathematical and Computer Modelling: An International Journal, 53 (2011), 1527-1534.doi: 10.1016/j.mcm.2010.04.003.

    [2]

    N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A. J. Swistel, M. P. Osborne and R. M. Simmons, Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer, The American Journal of Surgery, 196 (2008), 523-526.doi: 10.1016/j.amjsurg.2008.06.015.

    [3]

    F. C. Baker, J. I. Waner, E. F. Vieira, S. R. Taylor, H. S. Driver and D. Mitchell, Sleep and 24 hour body temperatures: A comparison in young men, naturally cycling women and women taking hormonal contraceptives, The Journal of Physiology, 530 (2001), 565-574.doi: 10.1111/j.1469-7793.2001.0565k.x.

    [4]

    G. F. Baronzio, A. Gramaglia, A. B. Baronzio and I. Freitas, Influence of Tumor Microenvironment on Thermoresponse: Biologic and Clinical Implications, Madame Curie Bioscience Database . Austin (TX): Landes Bioscience, 2000.

    [5]

    W. C. Black and H. G. Welch, Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy, New England Journal of Medicine, 328 (1993), 1237-1243.doi: 10.1056/NEJM199304293281706.

    [6]

    M. Brennan and N. Houssami, Thermography in breast cancer diagnosis, screening and risk assessment: systematic review, Breast Cancer Management, 2 (2013), 163-172.doi: 10.2217/bmt.13.4.

    [7]

    J. D. Bronzino, Medical Devices and Systems. Boca Raton, FL:CRC/Taylor & Francis; 2006.

    [8]

    C. K. Charny, Mathematical models of bioheat transfer, in Bioengineering Heat Transfer(ed. Y. I. Cho), Academic Press, (1992), 19-151.

    [9]

    Z. Deng and J. Liu, Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics, Computers in Biology and Medicine, 34 (2004), 495-521.doi: 10.1016/S0010-4825(03)00086-6.

    [10]

    J. Folkman, Tumor angiogenesis: Therapeutic implications, New England Journal of Medicine, 285 (1971), 1182-1186.

    [11]

    J. Folkman and R. Kalluri, Cancer without disease, Nature, 427 (2004), p787.doi: 10.1038/427787a.

    [12]

    F. J. González, Thermal simulation of breast tumors, Revista Mexicana de Fisica, 53 (2007), 323-326.

    [13]

    F. J. González, Non-invasive estimation of the metabolic heat production of breast tumors using digital infrared imaging, QIRT Journal, 8 (2011), 139-148.

    [14]

    H. P. Greenspan, Models for the growth of a solid tumor by diffusion, Studies in Applied Mathematics, LI (1972), 317-340.

    [15]

    D. R. Grimes, C. Kelly, K. Bloch and M. Partridge, A method for estimating the oxygen consumption rate in multicellular tumour spheroids, Journal of the Royal Society Interface, 11 (2013), p1124.doi: 10.1098/rsif.2013.1124.

    [16]

    R. N. Lawson, Implications of surface temperatures in the diagnosis of breast cancer, Canadian Medical Association Journal, 75 (1956), 309-310.

    [17]

    R. N. Lawson and M. S. Chugtai, Breast cancer and body temperatures, Canadian Medical Association Journal, 88 (1963), 68-70.

    [18]

    Q. Y. Lin, H. Q. Yang, S. S. Xie, Y. H. Wang, Z. Ye and S. Q. Chen, Detecting early breast tumour by finite element thermal analysis, Journal of Medical Engineering & Technology, 33 (2009), 274-280.doi: 10.1080/03091900802106638.

    [19]

    S. A. Maggelakis and A. E. Savakis, Heat transfer in tissue containing a prevascular tumor, Applied Mathematics Letters, 8 (1995), 7-10.doi: 10.1016/0893-9659(94)00101-H.

    [20]

    M. Mital and E. P. Scott, Thermal Detection of Embedded Tumors Using Infrared Imaging, Journal of Biomechanical Engineering, 129 (2006), 33-39.doi: 10.1115/1.2401181.

    [21]

    W. Mueller-Klieser, Method for the determination of oxygen consumption rates and diffusion coefficients in multicellular spheroids, Biophysical Journal, 46 (1984), 343-348.doi: 10.1016/S0006-3495(84)84030-8.

    [22]

    M. Paruch and E. Majchrzak, Identification of tumor region parameters using evolutionary algorithm and multiple reciprocity boundary element method, Engineering Applications of Artificial Intelligence, 20 (2007), 647-655.doi: 10.1016/j.engappai.2006.11.003.

    [23]

    H. H. Pennes, Analysis of tissue and arterial blood temperatures in the resting forearm, J. Appl. Physiol, 1 (1948), 93-122.

    [24]

    N. M. Sudharsan, E. Y. K. Ng and S. L. Teh, Surface Temperature Distribution of a Breast With and Without Tumour, Computer Methods in Biomechanics and Biomedical Engineering, 2 (1999), 187-199.doi: 10.1080/10255849908907987.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return