-
Previous Article
Uncertainty quantification in modeling HIV viral mechanics
- MBE Home
- This Issue
-
Next Article
Thermal detection of a prevascular tumor embedded in breast tissue
Parameters identification for a model of T cell homeostasis
1. | IMB UMR CNRS 5251, Bordeaux University, 3 Place de la Victoire, 33076 Bordeaux Cedex, France, France, France |
2. | INSERM U897, ISPED, Bordeaux University, Bordeaux, France |
References:
[1] |
H. Ayoub, B. E. Ainseba, M. Langlais, T. Hogan, R. Callard, B. Seddon and R. Thiébaut, Parameter identification for model of T cell proliferation in Lymphopenia conditions,, Mathematical biosciences, 251 (2014), 63.
doi: 10.1016/j.mbs.2014.03.002. |
[2] |
S. Bernard, L. Pujo-Menjouet and M. C Mackey, Analysis of cell kinetics using a cell division marker: Mathematical modeling of experimental data,, Biophysical Journal, 84 (2003), 3414.
doi: 10.1016/S0006-3495(03)70063-0. |
[3] |
R. J. Boer, V. V. Ganusov, D. Milutinovic, P. D. Hodgkin and A. S. Perelson, Estimating lymphocyte division and death rates from CFSE data,, Bulletin of Mathematical Biology, 68 (2006), 1011. Google Scholar |
[4] |
F. J. Burns and I. F. Tannock, On the existence of a go-phase in the cell cycle,, Cell Proliferation, 3 (1970), 321.
doi: 10.1111/j.1365-2184.1970.tb00340.x. |
[5] |
W. B. Cannon, The Wisdom of the Body,, 1932., (). Google Scholar |
[6] |
A. Freitas and J. Chen, Introduction: Regulation of lymphocyte homeostasis,, Microbes and Infection, 4 (2002), 529.
doi: 10.1016/S1286-4579(02)01568-X. |
[7] |
A. Freitas and B. Rocha, Population biology of lymphocytes: The flight for survival,, Annual Review of Immunology, 18 (2000), 83.
doi: 10.1146/annurev.immunol.18.1.83. |
[8] |
V. V. Ganusov, D. Milutinovic and R. J. De Boer, IL-2 regulates expansion of CD4+ T cell populations by affecting cell death: Insights from modeling CFSE data,, The Journal of Immunology, 179 (2007), 950.
doi: 10.4049/jimmunol.179.2.950. |
[9] |
V. V. Ganusov, S. S. Pilyugin, R. J. de Boer, K. Murali-Krishna, R. Ahmed and R. Antia, Quantifying cell turnover using CFSE data,, Journal of Immunological Methods, 298 (2005), 183.
doi: 10.1016/j.jim.2005.01.011. |
[10] |
A. W. Goldrath, C. J. Luckey, R. Park, C. Benoist and D. Mathis, The molecular program induced in T cells undergoing homeostatic proliferation,, Proceedings of the National Academy of Sciences of the United States of America, 101 (2004), 16885.
doi: 10.1073/pnas.0407417101. |
[11] |
S. E. Hamilton, M. C. Wolkers, S. P. Schoenberger and S. C. Jameson, The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells,, Nat Immunol, 7 (2006), 475.
doi: 10.1038/ni1326. |
[12] |
T. Hogan, A. Shuvaev, D. Commenges, A. Yates, R. Callard, R. Thiebaut and B. Seddon, Clonally Diverse T Cell Homeostasis Is Maintained by a Common Program of Cell-Cycle Control,, The Journal of Immunology, 190 (2013), 3985.
doi: 10.4049/jimmunol.1203213. |
[13] |
S. C. Jameson, T cell homeostasis: Keeping useful T cells alive and live T cells useful,, Seminars in Immunology, 17 (2005), 231.
doi: 10.1016/j.smim.2005.02.003. |
[14] |
S. C. Jameson, Maintaining the norm: T-cell homeostasis,, Nature Reviews Immunology, 2 (2002), 547. Google Scholar |
[15] |
H. Lee, E. Hawkins, M. S. Zand, T. Mosmann, H. Wu, P. D. Hodgkin and A. S. Perelson, Interpreting CFSE Obtained Division Histories of B Cells in Vitro with Smith-Martin and Cyton Type Models,, Bulletin of Mathematical Biology, 71 (2009), 1649.
doi: 10.1007/s11538-009-9418-6. |
[16] |
H. Lee and A. S. Perelson, Modeling T Cell Proliferation and Death in Vitro Based on Labeling Data: Generalizations of the Smith-Martin Cell Cycle Model,, Bulletin of Mathematical Biology, 70 (2008), 21.
doi: 10.1007/s11538-007-9239-4. |
[17] |
S. S. Pilyugin, V. V. Ganusov, K. Murali-Krishna, R. Ahmed and R. Antia, The rescaling method for quantifying the turnover of cell populations,, Journal of Theoretical Biology, 225 (2003), 275.
doi: 10.1016/S0022-5193(03)00245-5. |
[18] |
C. R. Parish, Fluorescent dyes for lymphocyte migration and proliferation studies,, Immunol Cell Biol, 77 (1999), 499.
doi: 10.1046/j.1440-1711.1999.00877.x. |
[19] |
J. A. Smith and L. Martin, Do Cells Cycle?,, Proceedings of the National Academy of Sciences, 70 (1973), 1263.
doi: 10.1073/pnas.70.4.1263. |
[20] |
C. Tanchot, F. A. Lemonnier, B. Pérarnau, A. A. Freitas and B. Rocha, Differential requirements for survival and proliferation of CD8 naïve or memory T cells,, Science, 276 (1997), 2057. Google Scholar |
[21] |
I. V. Numerics, Imsl Fortran 90 Library: User's Guide,, Visual Numerics, (1996). Google Scholar |
[22] |
A. Yates, M. Saini, A. Mathiot and B. Seddon, Mathematical modeling reveals the biological program regulating lymphopenia-induced proliferation,, The Journal of Immunology, 180 (2008), 1414.
doi: 10.4049/jimmunol.180.3.1414. |
show all references
References:
[1] |
H. Ayoub, B. E. Ainseba, M. Langlais, T. Hogan, R. Callard, B. Seddon and R. Thiébaut, Parameter identification for model of T cell proliferation in Lymphopenia conditions,, Mathematical biosciences, 251 (2014), 63.
doi: 10.1016/j.mbs.2014.03.002. |
[2] |
S. Bernard, L. Pujo-Menjouet and M. C Mackey, Analysis of cell kinetics using a cell division marker: Mathematical modeling of experimental data,, Biophysical Journal, 84 (2003), 3414.
doi: 10.1016/S0006-3495(03)70063-0. |
[3] |
R. J. Boer, V. V. Ganusov, D. Milutinovic, P. D. Hodgkin and A. S. Perelson, Estimating lymphocyte division and death rates from CFSE data,, Bulletin of Mathematical Biology, 68 (2006), 1011. Google Scholar |
[4] |
F. J. Burns and I. F. Tannock, On the existence of a go-phase in the cell cycle,, Cell Proliferation, 3 (1970), 321.
doi: 10.1111/j.1365-2184.1970.tb00340.x. |
[5] |
W. B. Cannon, The Wisdom of the Body,, 1932., (). Google Scholar |
[6] |
A. Freitas and J. Chen, Introduction: Regulation of lymphocyte homeostasis,, Microbes and Infection, 4 (2002), 529.
doi: 10.1016/S1286-4579(02)01568-X. |
[7] |
A. Freitas and B. Rocha, Population biology of lymphocytes: The flight for survival,, Annual Review of Immunology, 18 (2000), 83.
doi: 10.1146/annurev.immunol.18.1.83. |
[8] |
V. V. Ganusov, D. Milutinovic and R. J. De Boer, IL-2 regulates expansion of CD4+ T cell populations by affecting cell death: Insights from modeling CFSE data,, The Journal of Immunology, 179 (2007), 950.
doi: 10.4049/jimmunol.179.2.950. |
[9] |
V. V. Ganusov, S. S. Pilyugin, R. J. de Boer, K. Murali-Krishna, R. Ahmed and R. Antia, Quantifying cell turnover using CFSE data,, Journal of Immunological Methods, 298 (2005), 183.
doi: 10.1016/j.jim.2005.01.011. |
[10] |
A. W. Goldrath, C. J. Luckey, R. Park, C. Benoist and D. Mathis, The molecular program induced in T cells undergoing homeostatic proliferation,, Proceedings of the National Academy of Sciences of the United States of America, 101 (2004), 16885.
doi: 10.1073/pnas.0407417101. |
[11] |
S. E. Hamilton, M. C. Wolkers, S. P. Schoenberger and S. C. Jameson, The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells,, Nat Immunol, 7 (2006), 475.
doi: 10.1038/ni1326. |
[12] |
T. Hogan, A. Shuvaev, D. Commenges, A. Yates, R. Callard, R. Thiebaut and B. Seddon, Clonally Diverse T Cell Homeostasis Is Maintained by a Common Program of Cell-Cycle Control,, The Journal of Immunology, 190 (2013), 3985.
doi: 10.4049/jimmunol.1203213. |
[13] |
S. C. Jameson, T cell homeostasis: Keeping useful T cells alive and live T cells useful,, Seminars in Immunology, 17 (2005), 231.
doi: 10.1016/j.smim.2005.02.003. |
[14] |
S. C. Jameson, Maintaining the norm: T-cell homeostasis,, Nature Reviews Immunology, 2 (2002), 547. Google Scholar |
[15] |
H. Lee, E. Hawkins, M. S. Zand, T. Mosmann, H. Wu, P. D. Hodgkin and A. S. Perelson, Interpreting CFSE Obtained Division Histories of B Cells in Vitro with Smith-Martin and Cyton Type Models,, Bulletin of Mathematical Biology, 71 (2009), 1649.
doi: 10.1007/s11538-009-9418-6. |
[16] |
H. Lee and A. S. Perelson, Modeling T Cell Proliferation and Death in Vitro Based on Labeling Data: Generalizations of the Smith-Martin Cell Cycle Model,, Bulletin of Mathematical Biology, 70 (2008), 21.
doi: 10.1007/s11538-007-9239-4. |
[17] |
S. S. Pilyugin, V. V. Ganusov, K. Murali-Krishna, R. Ahmed and R. Antia, The rescaling method for quantifying the turnover of cell populations,, Journal of Theoretical Biology, 225 (2003), 275.
doi: 10.1016/S0022-5193(03)00245-5. |
[18] |
C. R. Parish, Fluorescent dyes for lymphocyte migration and proliferation studies,, Immunol Cell Biol, 77 (1999), 499.
doi: 10.1046/j.1440-1711.1999.00877.x. |
[19] |
J. A. Smith and L. Martin, Do Cells Cycle?,, Proceedings of the National Academy of Sciences, 70 (1973), 1263.
doi: 10.1073/pnas.70.4.1263. |
[20] |
C. Tanchot, F. A. Lemonnier, B. Pérarnau, A. A. Freitas and B. Rocha, Differential requirements for survival and proliferation of CD8 naïve or memory T cells,, Science, 276 (1997), 2057. Google Scholar |
[21] |
I. V. Numerics, Imsl Fortran 90 Library: User's Guide,, Visual Numerics, (1996). Google Scholar |
[22] |
A. Yates, M. Saini, A. Mathiot and B. Seddon, Mathematical modeling reveals the biological program regulating lymphopenia-induced proliferation,, The Journal of Immunology, 180 (2008), 1414.
doi: 10.4049/jimmunol.180.3.1414. |
[1] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[2] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[3] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[4] |
Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415 |
[5] |
Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021006 |
[6] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[7] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[8] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[9] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[10] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[11] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[12] |
Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006 |
[13] |
Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020375 |
[14] |
Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005 |
[15] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[16] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[17] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[18] |
Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261 |
[19] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[20] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]