\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global dynamics of a general class of multi-group epidemic models with latency and relapse

Abstract Related Papers Cited by
  • A multi-group model is proposed to describe a general relapse phenomenon of infectious diseases in heterogeneous populations. In each group, the population is divided into susceptible, exposed, infectious, and recovered subclasses. A general nonlinear incidence rate is used in the model. The results show that the global dynamics are completely determined by the basic reproduction number $R_0.$ In particular, a matrix-theoretic method is used to prove the global stability of the disease-free equilibrium when $R_0\leq1,$ while a new combinatorial identity (Theorem 3.3 in Shuai and van den Driessche [29]) in graph theory is applied to prove the global stability of the endemic equilibrium when $R_0>1.$ We would like to mention that by applying the new combinatorial identity, a graph of 3n (or 2n+m) vertices can be converted into a graph of n vertices in order to deal with the global stability of the endemic equilibrium in this paper.
    Mathematics Subject Classification: Primary: 34D23; Secondary: 92B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.

    [2]

    N. P. Bhatia and G. P. Szegö, Dynamical Systems: Stability Theory and Applications, Lecture Notes in Math. 35, Springer, Berlin, 1967.

    [3]

    C. Castillo-Charez, W. Huang and J. Li, Competitive exclusion in genorrhea models and other sexually transmitted diseases, SIAM J. Appl. Math., 56 (1996), 494-508.doi: 10.1137/S003613999325419X.

    [4]

    C. Castillo-Charez, W. Huang and J. Li, Competitive exclusion and coexistence of multiple strains in an SIS STD model, SIAM J. Appl. Math., 59 (1999), 1790-1811.doi: 10.1137/S0036139997325862.

    [5]

    O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.doi: 10.1007/BF00178324.

    [6]

    M. C. Eisenberg, Z. Shuai, J. H. Tien and P. van den Driessche, A cholera model in a patchy environment with water and human movement, Math. Biosci., 246 (2013), 105-112.doi: 10.1016/j.mbs.2013.08.003.

    [7]

    H. I. Freedman, S. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set, J. Dynam. Diff. Equat., 6 (1994), 583-600.doi: 10.1007/BF02218848.

    [8]

    F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.

    [9]

    Q. Hou, Z. Jin and S. Ruan, Dynamics of rabies epidemics and the impact of control efforts in Guangdong Province, China, J. Theor. Biol., 300 (2012), 39-47.doi: 10.1016/j.jtbi.2012.01.006.

    [10]

    D. Gao and S. Ruan, A multipatch mararia model with logistic growth population, SIAM J. Appl. Math., 72 (2012), 819-841.doi: 10.1137/110850761.

    [11]

    L. J. Gonzalez-Montaner, S. Natal, P. Yongchaiyud and P. Olliaro, et al., Rifabutin for the treatment of newly-diagnosed pulmonary tuberculosis: a multinational, randomized, comparative study versus Rifampicin, Tuber Lung Dis., 75 (1994), 341-347.doi: 10.1016/0962-8479(94)90079-5.

    [12]

    H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., 14 (2006), 259-284.

    [13]

    J. Jiang and Z. Qiu, The complete classification for dynamics in a nine-dimensional West Nile Virus model, SIAM J. Appl. Math., 69 (2009), 1205-1227.doi: 10.1137/070709438.

    [14]

    A. Y. Kim, J. Schulze zur Wiesch, T. Kuntzen , J. Timm and D. E Kaufmann, et al., Impaired Hepatitis C virus-specific T cell responses and recurrent Hepatitis C virus in HIV coinfection, PLoS Med., 3 (2006), e492.doi: 10.1371/journal.pmed.0030492.

    [15]

    A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages, Bull. Math. Biol., 71 (2009), 75-83.doi: 10.1007/s11538-008-9352-z.

    [16]

    A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28 (1976), 221-236.doi: 10.1016/0025-5564(76)90125-5.

    [17]

    M. L. Lamberta, E. Haskera, A. Van Deuna, D. Roberfroida, M. Boelaerta and P. Van der Stuyft, Recurrence in tuberculosis: Relapse or reinfection?, Lancet Infect. Dis., 3 (2003), 282-287.doi: 10.1016/S1473-3099(03)00607-8.

    [18]

    J. P. Lasalle, The stability of dynamicals systems, Reginal Conf. Ser. Appl., SIAM, Philadelphia, 1976.

    [19]

    M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160 (1999), 191-213.doi: 10.1016/S0025-5564(99)00030-9.

    [20]

    M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 361 (2010), 38-47.doi: 10.1016/j.jmaa.2009.09.017.

    [21]

    M.Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, J. Diff. Equat., 248 (2010), 1-20.doi: 10.1016/j.jde.2009.09.003.

    [22]

    S. Liu and L. Wang, Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy, Math. Biosci. Eng., 7 (2010), 675-685.doi: 10.3934/mbe.2010.7.675.

    [23]

    S. Liu, S. Wang and L. Wang, Global dynamics of delay epidemic models with nonlinear incidence rate and relapse, Nonlinear Anal. Real World Appl., 12 (2011), 119-127.doi: 10.1016/j.nonrwa.2010.06.001.

    [24]

    A. Marzano, S. Gaia, V. Ghisetti, S. Carenzi and A. Premoli, et al., Viral load at the time of liver transplantation and risk of hepatitis B virus recurrence, Liver Transpl., 11 (2005), 402-409.doi: 10.1002/lt.20402.

    [25]

    Y. Muroya, Y. Enatsu and T. Kuniya, Global stability for a multi-group SIRS epidemic model with varying population sizes, Nonlinear Anal. Real World Appl., 14 (2013), 1693-1704.doi: 10.1016/j.nonrwa.2012.11.005.

    [26]

    H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal. Real World Appl., 13 (2012), 1581-1592.doi: 10.1016/j.nonrwa.2011.11.016.

    [27]

    Z. Shuai and P. van den Driessche, Global dynamics of cholera models with differential infectivity, Math. Biosci., 234 (2011), 118-126.doi: 10.1016/j.mbs.2011.09.003.

    [28]

    Z. Shuai and P. van den Driessche, Impact of heterogeneity on the dynamics of an SEIR epidemic model, Math. Biosci. Eng., 9 (2012), 393-411.doi: 10.3934/mbe.2012.9.393.

    [29]

    Z. Shuai and P. van den Driessche, Global stability of infectious disease models using Lyapunov functious, SIAM J. Appl. Math., 73 (2013), 1513-1532.doi: 10.1137/120876642.

    [30]

    H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, Cambridge, UK, 1995.doi: 10.1017/CBO9780511530043.

    [31]

    P. Sonnenberg, J. Murray, J. R Glynn, S. Shearer and B. Kambashi, et al., HIV-1 and recurrence, relapse, and reinfection of tuberculosis after cure: a cohort study in South African mineworkers, Lancet, 358 (2001), 1687-1693.doi: 10.1016/S0140-6736(01)06712-5.

    [32]

    R. Sun and J. Shi, Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates, Appl. Math. Comput., 218 (2011), 280-286.doi: 10.1016/j.amc.2011.05.056.

    [33]

    A. R. Tuite, J. H. Tien, M. Eisenberg, D. J. D. Earn and J. Ma, et al., Cholera epidemic in Haiti, 2010: Using a transmission model to explain spatial spread of disease and identify optimal control interventions, Ann. Internal Med., 154 (2011), 593-601.doi: 10.7326/0003-4819-154-9-201105030-00334.

    [34]

    P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6.

    [35]

    P. van den Driessche, L. Wang and X. Zou, Modeling disease with latencecy and relapse, Math. Biosci. Eng., 4 (2007), 205-219.doi: 10.3934/mbe.2007.4.205.

    [36]

    P. van den Driessche and X. Zou, Modeling relapse in infectious disease, Math. Biosci., 207 (2007), 89-103.doi: 10.1016/j.mbs.2006.09.017.

    [37]

    Y. Yuan and J. Bélair, Threshold dynamics in an SEIRS model with latency and temporary immunity, J. Math. Biol., 69 (2014), 875-904.doi: 10.1007/s00285-013-0720-4.

    [38]

    J. Zhang, Z. Jin, G. Sun, X. Sun and S. Ruan, Modeling seasonal Rabies epidemics in china, Bull. Math. Biol., 74 (2012), 1226-1251.doi: 10.1007/s11538-012-9720-6.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(62) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return