-
Previous Article
Structured populations with diffusion and Feller conditions
- MBE Home
- This Issue
- Next Article
Seasonality and the effectiveness of mass vaccination
1. | Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, United States, United States |
References:
[1] |
S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual and P. Rohani, Seasonality and the dynamics of infectious diseases, Ecol Lett, 9 (2006), 467-484.
doi: 10.1111/j.1461-0248.2005.00879.x. |
[2] |
R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, United Kingdom, 1991. |
[3] |
J. L. Aron and I. B. Schwartz, Seasonality and period-doubling bifurcations in an epidemic model, J Theor Biol, 110 (1984), 665-679.
doi: 10.1016/S0022-5193(84)80150-2. |
[4] |
K. M. Campbell, C. D. Lin, S. Iamsirithaworn and T. W. Scott, The complex relationship between weather and dengue virus transmission in Thailand, Am J Trop Med Hyg, 89 (2013), 1066-1080.
doi: 10.4269/ajtmh.13-0321. |
[5] |
D. L. Chao, I. M. Longini Jr. and J. G. Morris Jr., Modeling cholera outbreaks, in Current Topics in Microbiology and Immunology: Cholera Outbreaks (eds. G. B. Nair and Y. Takeda), vol. 379, Springer-Verlag, Berlin, 2014, 195-209.
doi: 10.1007/82_2013_307. |
[6] |
C. T. Codeço, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infect Dis, 1 (2001), p1. |
[7] |
B. J. Cowling, V. J. Fang, S. Riley, J. S. Malik Peiris and G. M. Leung, Estimation of the serial interval of influenza, Epidemiology, 20 (2009), 344-347.
doi: 10.1097/EDE.0b013e31819d1092. |
[8] |
O. Diekmann, J. A. Heesterbeek and J. A. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J Math Biol, 28 (1990), 365-382.
doi: 10.1007/BF00178324. |
[9] |
D. T. Dimitrov, C. Troeger, M. E. Halloran, I. M. Longini and D. L. Chao, Comparative effectiveness of different strategies of oral cholera vaccination in {Bangladesh}: A modeling study, PLoS Negl Trop Dis, 8 (2014), e3343.
doi: 10.1371/journal.pntd.0003343. |
[10] |
M. J. Ferrari, A. Djibo, R. F. Grais, N. Bharti, B. T. Grenfell and O. N. Bjornstad, Rural-urban gradient in seasonal forcing of measles transmission in Niger, Proc Biol Sci, 277 (2010), 2775-2782.
doi: 10.1098/rspb.2010.0536. |
[11] |
P. Fine, K. Eames and D. L. Heymann, "Herd immunity'': A rough guide, Clin Infect Dis, 52 (2011), 911-916.
doi: 10.1093/cid/cir007. |
[12] |
D. Fisman, Seasonality of viral infections: Mechanisms and unknowns, Clin Microbiol Infect, 18 (2012), 946-954.
doi: 10.1111/j.1469-0691.2012.03968.x. |
[13] |
D. N. Fisman, Seasonality of infectious diseases, Annu Rev Public Health, 28 (2007), 127-143.
doi: 10.1146/annurev.publhealth.28.021406.144128. |
[14] |
J. P. Fox, Herd immunity and measles, Rev Infect Dis, 5 (1983), 463-466.
doi: 10.1093/clinids/5.3.463. |
[15] |
N. C. Grassly and C. Fraser, Seasonal infectious disease epidemiology, Proc Biol Sci, 273 (2006), 2541-2550.
doi: 10.1098/rspb.2006.3604. |
[16] |
S. B. Halstead, Dengue virus-mosquito interactions, Annu Rev Entomol, 53 (2008), 273-291.
doi: 10.1146/annurev.ento.53.103106.093326. |
[17] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[18] |
M. J. Keeling and B. T. Grenfell, Understanding the persistence of measles: Reconciling theory, simulation and observation, Proc Biol Sci, 269 (2002), 335-343.
doi: 10.1098/rspb.2001.1898. |
[19] |
W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London. Series A, 115 (1927), 700-721. |
[20] |
L. Lambrechts, K. P. Paaijmans, T. Fansiri, L. B. Carrington, L. D. Kramer, M. B. Thomas and T. W. Scott, Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti, Proc Natl Acad Sci U S A, 108 (2011), 7460-7465. |
[21] |
D. Ludwig, Final size distribution for epidemics, Math Biosci, 23 (1975), 33-46.
doi: 10.1016/0025-5564(75)90119-4. |
[22] |
G. Macdonald, The epidemiology and control of malaria, Oxford University Press, Oxford, United Kingdom, 1957. |
[23] |
M. Martinez-Bakker, K. M. Bakker, A. A. King and P. Rohani, Human birth seasonality: Latitudinal gradient and interplay with childhood disease dynamics, Proc Biol Sci, 281 (2014), 20132438.
doi: 10.1098/rspb.2013.2438. |
[24] |
L. Matrajt, T. Britton, M. E. Halloran and I. M. Longini Jr., One versus two doses: What is the best use of vaccine in an influenza pandemic?, Epidemics, 13 (2015), 17-27.
doi: 10.1016/j.epidem.2015.06.001. |
[25] |
H. Nishiura and S. B. Halstead, Natural history of dengue virus (DENV)-1 and DENV-4 infections: reanalysis of classic studies, J Infect Dis, 195 (2007), 1007-1013.
doi: 10.1086/511825. |
[26] |
M. G. Roberts and R. R. Kao, The dynamics of an infectious disease in a population with birth pulses, Math Biosci, 149 (1998), 23-36.
doi: 10.1016/S0025-5564(97)10016-5. |
[27] |
L. A. Rvachev and I. M. Longini Jr., A mathematical model for the global spread of influenza, Math Biosci, 75 (1985), 3-22.
doi: 10.1016/0025-5564(85)90064-1. |
[28] |
D. L. Schanzer, J. M. Langley, T. Dummer, C. Viboud and T. W. S. Tam, A composite epidemic curve for seasonal influenza in Canada with an international comparison, Influenza Other Respir Viruses, 4 (2010), 295-306. |
[29] |
E. Schwartz, L. H. Weld, A. Wilder-Smith, F. von Sonnenburg, J. S. Keystone, K. C. Kain, J. Torresi and D. O. Freedman, Seasonality, annual trends, and characteristics of dengue among ill returned travelers, 1997-2006, Emerg Infect Dis, 14 (2008), 1081-1088.
doi: 10.3201/eid1407.071412. |
[30] |
L. Stone, B. Shulgin and Z. Agur, Theoretical examination of the pulse vaccination policy in the SIR epidemic model, Math and Comp Mod, 31 (2000), 207-215.
doi: 10.1016/S0895-7177(00)00040-6. |
[31] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[32] |
D. Whittington, D. Sur, J. Cook, S. Chatterjee, B. Maskery, M. Lahiri, C. Poulos, S. Boral, A. Nyamete, J. Deen, L. Ochiai and S. K. Bhattacharya, Rethinking cholera and typhoid vaccination policies for the poor: Private demand in Kolkata, India, World Development, 37 (2009), 399-409.
doi: 10.1016/j.worlddev.2008.04.002. |
show all references
References:
[1] |
S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual and P. Rohani, Seasonality and the dynamics of infectious diseases, Ecol Lett, 9 (2006), 467-484.
doi: 10.1111/j.1461-0248.2005.00879.x. |
[2] |
R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, United Kingdom, 1991. |
[3] |
J. L. Aron and I. B. Schwartz, Seasonality and period-doubling bifurcations in an epidemic model, J Theor Biol, 110 (1984), 665-679.
doi: 10.1016/S0022-5193(84)80150-2. |
[4] |
K. M. Campbell, C. D. Lin, S. Iamsirithaworn and T. W. Scott, The complex relationship between weather and dengue virus transmission in Thailand, Am J Trop Med Hyg, 89 (2013), 1066-1080.
doi: 10.4269/ajtmh.13-0321. |
[5] |
D. L. Chao, I. M. Longini Jr. and J. G. Morris Jr., Modeling cholera outbreaks, in Current Topics in Microbiology and Immunology: Cholera Outbreaks (eds. G. B. Nair and Y. Takeda), vol. 379, Springer-Verlag, Berlin, 2014, 195-209.
doi: 10.1007/82_2013_307. |
[6] |
C. T. Codeço, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infect Dis, 1 (2001), p1. |
[7] |
B. J. Cowling, V. J. Fang, S. Riley, J. S. Malik Peiris and G. M. Leung, Estimation of the serial interval of influenza, Epidemiology, 20 (2009), 344-347.
doi: 10.1097/EDE.0b013e31819d1092. |
[8] |
O. Diekmann, J. A. Heesterbeek and J. A. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J Math Biol, 28 (1990), 365-382.
doi: 10.1007/BF00178324. |
[9] |
D. T. Dimitrov, C. Troeger, M. E. Halloran, I. M. Longini and D. L. Chao, Comparative effectiveness of different strategies of oral cholera vaccination in {Bangladesh}: A modeling study, PLoS Negl Trop Dis, 8 (2014), e3343.
doi: 10.1371/journal.pntd.0003343. |
[10] |
M. J. Ferrari, A. Djibo, R. F. Grais, N. Bharti, B. T. Grenfell and O. N. Bjornstad, Rural-urban gradient in seasonal forcing of measles transmission in Niger, Proc Biol Sci, 277 (2010), 2775-2782.
doi: 10.1098/rspb.2010.0536. |
[11] |
P. Fine, K. Eames and D. L. Heymann, "Herd immunity'': A rough guide, Clin Infect Dis, 52 (2011), 911-916.
doi: 10.1093/cid/cir007. |
[12] |
D. Fisman, Seasonality of viral infections: Mechanisms and unknowns, Clin Microbiol Infect, 18 (2012), 946-954.
doi: 10.1111/j.1469-0691.2012.03968.x. |
[13] |
D. N. Fisman, Seasonality of infectious diseases, Annu Rev Public Health, 28 (2007), 127-143.
doi: 10.1146/annurev.publhealth.28.021406.144128. |
[14] |
J. P. Fox, Herd immunity and measles, Rev Infect Dis, 5 (1983), 463-466.
doi: 10.1093/clinids/5.3.463. |
[15] |
N. C. Grassly and C. Fraser, Seasonal infectious disease epidemiology, Proc Biol Sci, 273 (2006), 2541-2550.
doi: 10.1098/rspb.2006.3604. |
[16] |
S. B. Halstead, Dengue virus-mosquito interactions, Annu Rev Entomol, 53 (2008), 273-291.
doi: 10.1146/annurev.ento.53.103106.093326. |
[17] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[18] |
M. J. Keeling and B. T. Grenfell, Understanding the persistence of measles: Reconciling theory, simulation and observation, Proc Biol Sci, 269 (2002), 335-343.
doi: 10.1098/rspb.2001.1898. |
[19] |
W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the Royal Society of London. Series A, 115 (1927), 700-721. |
[20] |
L. Lambrechts, K. P. Paaijmans, T. Fansiri, L. B. Carrington, L. D. Kramer, M. B. Thomas and T. W. Scott, Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti, Proc Natl Acad Sci U S A, 108 (2011), 7460-7465. |
[21] |
D. Ludwig, Final size distribution for epidemics, Math Biosci, 23 (1975), 33-46.
doi: 10.1016/0025-5564(75)90119-4. |
[22] |
G. Macdonald, The epidemiology and control of malaria, Oxford University Press, Oxford, United Kingdom, 1957. |
[23] |
M. Martinez-Bakker, K. M. Bakker, A. A. King and P. Rohani, Human birth seasonality: Latitudinal gradient and interplay with childhood disease dynamics, Proc Biol Sci, 281 (2014), 20132438.
doi: 10.1098/rspb.2013.2438. |
[24] |
L. Matrajt, T. Britton, M. E. Halloran and I. M. Longini Jr., One versus two doses: What is the best use of vaccine in an influenza pandemic?, Epidemics, 13 (2015), 17-27.
doi: 10.1016/j.epidem.2015.06.001. |
[25] |
H. Nishiura and S. B. Halstead, Natural history of dengue virus (DENV)-1 and DENV-4 infections: reanalysis of classic studies, J Infect Dis, 195 (2007), 1007-1013.
doi: 10.1086/511825. |
[26] |
M. G. Roberts and R. R. Kao, The dynamics of an infectious disease in a population with birth pulses, Math Biosci, 149 (1998), 23-36.
doi: 10.1016/S0025-5564(97)10016-5. |
[27] |
L. A. Rvachev and I. M. Longini Jr., A mathematical model for the global spread of influenza, Math Biosci, 75 (1985), 3-22.
doi: 10.1016/0025-5564(85)90064-1. |
[28] |
D. L. Schanzer, J. M. Langley, T. Dummer, C. Viboud and T. W. S. Tam, A composite epidemic curve for seasonal influenza in Canada with an international comparison, Influenza Other Respir Viruses, 4 (2010), 295-306. |
[29] |
E. Schwartz, L. H. Weld, A. Wilder-Smith, F. von Sonnenburg, J. S. Keystone, K. C. Kain, J. Torresi and D. O. Freedman, Seasonality, annual trends, and characteristics of dengue among ill returned travelers, 1997-2006, Emerg Infect Dis, 14 (2008), 1081-1088.
doi: 10.3201/eid1407.071412. |
[30] |
L. Stone, B. Shulgin and Z. Agur, Theoretical examination of the pulse vaccination policy in the SIR epidemic model, Math and Comp Mod, 31 (2000), 207-215.
doi: 10.1016/S0895-7177(00)00040-6. |
[31] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[32] |
D. Whittington, D. Sur, J. Cook, S. Chatterjee, B. Maskery, M. Lahiri, C. Poulos, S. Boral, A. Nyamete, J. Deen, L. Ochiai and S. K. Bhattacharya, Rethinking cholera and typhoid vaccination policies for the poor: Private demand in Kolkata, India, World Development, 37 (2009), 399-409.
doi: 10.1016/j.worlddev.2008.04.002. |
[1] |
Bruno Buonomo, Giuseppe Carbone, Alberto d'Onofrio. Effect of seasonality on the dynamics of an imitation-based vaccination model with public health intervention. Mathematical Biosciences & Engineering, 2018, 15 (1) : 299-321. doi: 10.3934/mbe.2018013 |
[2] |
Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou. Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences & Engineering, 2016, 13 (4) : 813-840. doi: 10.3934/mbe.2016019 |
[3] |
Markus Thäter, Kurt Chudej, Hans Josef Pesch. Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth. Mathematical Biosciences & Engineering, 2018, 15 (2) : 485-505. doi: 10.3934/mbe.2018022 |
[4] |
W. E. Fitzgibbon, J. J. Morgan. Analysis of a reaction diffusion model for a reservoir supported spread of infectious disease. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6239-6259. doi: 10.3934/dcdsb.2019137 |
[5] |
C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008 |
[6] |
Min Zhu, Xiaofei Guo, Zhigui Lin. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1565-1583. doi: 10.3934/mbe.2017081 |
[7] |
Ionel S. Ciuperca, Matthieu Dumont, Abdelkader Lakmeche, Pauline Mazzocco, Laurent Pujo-Menjouet, Human Rezaei, Léon M. Tine. Alzheimer's disease and prion: An in vitro mathematical model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5225-5260. doi: 10.3934/dcdsb.2019057 |
[8] |
Xinli Hu. Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences & Engineering, 2012, 9 (1) : 111-122. doi: 10.3934/mbe.2012.9.111 |
[9] |
Roberto A. Saenz, Herbert W. Hethcote. Competing species models with an infectious disease. Mathematical Biosciences & Engineering, 2006, 3 (1) : 219-235. doi: 10.3934/mbe.2006.3.219 |
[10] |
Juan Pablo Aparicio, Carlos Castillo-Chávez. Mathematical modelling of tuberculosis epidemics. Mathematical Biosciences & Engineering, 2009, 6 (2) : 209-237. doi: 10.3934/mbe.2009.6.209 |
[11] |
Horst R. Thieme. Distributed susceptibility: A challenge to persistence theory in infectious disease models. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 865-882. doi: 10.3934/dcdsb.2009.12.865 |
[12] |
Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053 |
[13] |
Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa. A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences & Engineering, 2005, 2 (4) : 811-832. doi: 10.3934/mbe.2005.2.811 |
[14] |
Cristina Cross, Alysse Edwards, Dayna Mercadante, Jorge Rebaza. Dynamics of a networked connectivity model of epidemics. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3379-3390. doi: 10.3934/dcdsb.2016102 |
[15] |
Karyn L. Sutton, H.T. Banks, Carlos Castillo-Chávez. Estimation of invasive pneumococcal disease dynamics parameters and the impact of conjugate vaccination in Australia. Mathematical Biosciences & Engineering, 2008, 5 (1) : 175-204. doi: 10.3934/mbe.2008.5.175 |
[16] |
Shangbin Cui, Meng Bai. Mathematical analysis of population migration and its effects to spread of epidemics. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2819-2858. doi: 10.3934/dcdsb.2015.20.2819 |
[17] |
Islam A. Moneim, David Greenhalgh. Use Of A Periodic Vaccination Strategy To Control The Spread Of Epidemics With Seasonally Varying Contact Rate. Mathematical Biosciences & Engineering, 2005, 2 (3) : 591-611. doi: 10.3934/mbe.2005.2.591 |
[18] |
Qingkai Kong, Zhipeng Qiu, Zi Sang, Yun Zou. Optimal control of a vector-host epidemics model. Mathematical Control and Related Fields, 2011, 1 (4) : 493-508. doi: 10.3934/mcrf.2011.1.493 |
[19] |
Hongbin Guo, Michael Yi Li. Global dynamics of a staged progression model for infectious diseases. Mathematical Biosciences & Engineering, 2006, 3 (3) : 513-525. doi: 10.3934/mbe.2006.3.513 |
[20] |
M. H. A. Biswas, L. T. Paiva, MdR de Pinho. A SEIR model for control of infectious diseases with constraints. Mathematical Biosciences & Engineering, 2014, 11 (4) : 761-784. doi: 10.3934/mbe.2014.11.761 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]