2016, 13(2): 281-301. doi: 10.3934/mbe.2015003

Electrical-thermal analytical modeling of monopolar RF thermal ablation of biological tissues: determining the circumstances under which tissue temperature reaches a steady state

1. 

Applied Mathematics Department, Universitat Politècnica de València, Camino de Vera 46022 Valencia, Spain, Spain

2. 

Biomedical Synergy, Electronic Engineering Department, Universitat Politècnica de València, Camino de Vera 46022 Valencia, Spain

Received  March 2015 Revised  July 2015 Published  November 2015

It has been suggested that during RF thermal ablation of biological tissue the thermal lesion could reach an equilibrium size after 1-2 minutes. Our objective was to determine under which circumstances of electrode geometry (needle-like vs. ball-tip), electrode type (dry vs. cooled) and blood perfusion the temperature will reach a steady state at any point in the tissue. We solved the bioheat equation analytically both in cylindrical and spherical coordinates and the resultant limit temperatures were compared. Our results demonstrate mathematically that tissue temperature reaches a steady value in all cases except for cylindrical coordinates without the blood perfusion term, both for dry and cooled electrodes, where temperature increases infinitely. This result is only true when the boundary condition far from the active electrode is considered to be at infinitum. In contrast, when a finite and sufficiently large domain is considered, temperature reaches always a steady state.
Citation: J. A. López Molina, M. J. Rivera, E. Berjano. Electrical-thermal analytical modeling of monopolar RF thermal ablation of biological tissues: determining the circumstances under which tissue temperature reaches a steady state. Mathematical Biosciences & Engineering, 2016, 13 (2) : 281-301. doi: 10.3934/mbe.2015003
References:
[1]

B. L. Yun, J. M. Lee, J. H. Baek, S. H. Kim, J. Y. Lee, J. K. Han and B. I. Choi, Radiofrequency ablation for treating liver metastases from a non-colorectal origin,, Korean Journal Radiology, 12 (2011), 579.  doi: 10.3348/kjr.2011.12.5.579.  Google Scholar

[2]

E. R. Cosman Jr. and E. R. Cosman Sr., Electric and thermal field effects in tissue around radiofrequency electrodes,, Pain Medicine, 6 (2005), 405.   Google Scholar

[3]

A. Thiagalingam, C. R. Campbell, A. C. Boyd, V. E. Eipper, D. L. Ross and P. Kovoor, Cooled intramural needle catheter ablation creates deeper lesions than irrigated tip catheter ablation,, Pacing and Clinical Electrophysiology, 27 (2004), 965.  doi: 10.1111/j.1540-8159.2004.00566.x.  Google Scholar

[4]

S. I. Cho, B. Y. Chung, M. G. Cho, J. H. Baek, C. W. Park, C. H. Lee and H. O. Kim, Evaluation of the clinical efficacy of fractional radiofrequency microneedle treatament in acne scars and large facial pores,, Dermatologic survey, (2012), 1017.   Google Scholar

[5]

T. H. Everett 4th, K. W. Lee, E. E. Wilson, J. M. Guerra, P. D. Varosy and J. E. Olgin, Safety profiles and lesion size of different radiofrequency ablation technologies: A comparison of large tip, open and closed irrigation catheters,, Journal of Cardiovascular Electrophysiology, 20 (2009), 325.   Google Scholar

[6]

Y. Nakasone, O. Ikeda, K. Kawanaka, K. Yokoyama and Y. Yamashita, Radiofrequency ablation in a porcine kidney model: Effect of occlusion of the arterial blood supply on ablation temperature, coagulation diameter, and histology,, Acta Radiologica, 53 (2012), 852.  doi: 10.1258/ar.2012.110530.  Google Scholar

[7]

E. J. Berjano, Theoretical modeling for radiofrequency ablation: State-of-the-art and challenges for the future,, Biomedical Engineering Online, 18 (2006).   Google Scholar

[8]

Y. Jiang, W. Chong, M. C. Diel Rambo, L. A. Bortolaia and A. C. Valdiero, Analytical solution of temperature distributions in radiofrequency ablation due to a point source of electrical current,, 60 Brasilean Conference on Dynamics, (2007), 21.   Google Scholar

[9]

M. J. Rivera, M. Trujillo, V. Romero García, J. A. López Molina and E. J. Berjano, Numerical resolution of the hyperbolic heat equation using smooted mathematical functions instead of Heaviside and dirac delta distributions,, International Communications in Heat and Mass Transfer, 46 (2013), 7.   Google Scholar

[10]

J. D. Wiley and J. G. Webster, Analysis and control of the current distribution under circular dispersive electrodes,, IEEE Transactions on Biomedical Engineering, 29 (1982), 381.  doi: 10.1109/TBME.1982.324910.  Google Scholar

[11]

K. M. Overmyer, J. A. Pearce and D. P. de Witt, Measurements of temperature distributions at electro-surgical dispersive electrode sites,, Transactions of the ASME, 101 (1979), 66.   Google Scholar

[12]

W. M. Honig, The mechanism of cutting in electrosurgery,, IEEE Transactions on Biomedical Engineering, 22 (1975), 58.  doi: 10.1109/TBME.1975.324541.  Google Scholar

[13]

A. Erez and A. Shitzer, Controlled destruction and temperature distributions in biological tissues subjected to monoactive electroagulation,, Journal of Biomechanical Engineering, 102 (1980), 42.   Google Scholar

[14]

D. E. Haines and D. D. Watson, Tissue heating durin radiofrequency catheter ablation: A thermodynamic model and observations in isolated perfused and superfused canine right ventricular free wall,, Pacing and Clinical Electrophysiology, 12 (1989), 962.   Google Scholar

[15]

D. Haemmerich, L. Chachati, A. S. Wright, D. M. Mahvi, F. T. Lee Jr. and J. G. Webster, Hepatic radiofrequency ablation with internally cooled probes: Effect of coolant temperature on lesion size,, IEEE Transactions on Biomedical Engineering, 50 (2003), 493.  doi: 10.1109/TBME.2003.809488.  Google Scholar

[16]

J. A. López Molina, M. J. Rivera, M. Trujillo and E. J. Berjano, Effect of the thermal wave in radiofrequency ablation modeling: An analytical study,, Physics in Medicine and Biology, 53 (2008), 1447.  doi: 10.1088/0031-9155/53/5/018.  Google Scholar

[17]

J. A. López Molina, M. J. Rivera and E. J. Berjano, Analytical model based on a cylindrical geometry to study of RF ablation with needle-like internally cooled electrode,, Mathematical Problems in Engineering, (2012).   Google Scholar

[18]

M. J. Rivera, J. A. López Molina, M. Trujillo and E. J. Berjano, Theoretical modeling of RF ablation with internally cooled electrodes: Comparative study of different thermal boundary conditions at the electrode-tissue interface,, Mathematical Biosciences and Engineering, 6 (2009), 611.  doi: 10.3934/mbe.2009.6.611.  Google Scholar

[19]

G. N. Watson, A Treatise on the Theory of Bessel Functions,, Cambridge Mathematical Library, (1995).   Google Scholar

[20]

E. J. Berjano, E. Navarro, V. Ribera, J. Gorris and J. L. Alió, Radiofrequency heating of the cornea: An engineering review of electrodes and applicators,, Open Biomedical Engineering Journal, 11 (2007), 71.   Google Scholar

[21]

M. Trujillo, J. Alba and E. J. Berjano, Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes,, International Journal of Hyperthermia, 28 (2012), 62.  doi: 10.3109/02656736.2011.631076.  Google Scholar

[22]

I. A. Chang, Finite elements analysis of hepatic radiofrequency ablation probes using temperature-dependent electrical conductivity,, Biomedical Engineering Online, 8 (2003).   Google Scholar

[23]

I. A. Chang and U. D. Nguyen, Thermal modeling of lesions growth with radiofrequency ablation devices,, Biomedical Engineering Online, 6 (2004).   Google Scholar

show all references

References:
[1]

B. L. Yun, J. M. Lee, J. H. Baek, S. H. Kim, J. Y. Lee, J. K. Han and B. I. Choi, Radiofrequency ablation for treating liver metastases from a non-colorectal origin,, Korean Journal Radiology, 12 (2011), 579.  doi: 10.3348/kjr.2011.12.5.579.  Google Scholar

[2]

E. R. Cosman Jr. and E. R. Cosman Sr., Electric and thermal field effects in tissue around radiofrequency electrodes,, Pain Medicine, 6 (2005), 405.   Google Scholar

[3]

A. Thiagalingam, C. R. Campbell, A. C. Boyd, V. E. Eipper, D. L. Ross and P. Kovoor, Cooled intramural needle catheter ablation creates deeper lesions than irrigated tip catheter ablation,, Pacing and Clinical Electrophysiology, 27 (2004), 965.  doi: 10.1111/j.1540-8159.2004.00566.x.  Google Scholar

[4]

S. I. Cho, B. Y. Chung, M. G. Cho, J. H. Baek, C. W. Park, C. H. Lee and H. O. Kim, Evaluation of the clinical efficacy of fractional radiofrequency microneedle treatament in acne scars and large facial pores,, Dermatologic survey, (2012), 1017.   Google Scholar

[5]

T. H. Everett 4th, K. W. Lee, E. E. Wilson, J. M. Guerra, P. D. Varosy and J. E. Olgin, Safety profiles and lesion size of different radiofrequency ablation technologies: A comparison of large tip, open and closed irrigation catheters,, Journal of Cardiovascular Electrophysiology, 20 (2009), 325.   Google Scholar

[6]

Y. Nakasone, O. Ikeda, K. Kawanaka, K. Yokoyama and Y. Yamashita, Radiofrequency ablation in a porcine kidney model: Effect of occlusion of the arterial blood supply on ablation temperature, coagulation diameter, and histology,, Acta Radiologica, 53 (2012), 852.  doi: 10.1258/ar.2012.110530.  Google Scholar

[7]

E. J. Berjano, Theoretical modeling for radiofrequency ablation: State-of-the-art and challenges for the future,, Biomedical Engineering Online, 18 (2006).   Google Scholar

[8]

Y. Jiang, W. Chong, M. C. Diel Rambo, L. A. Bortolaia and A. C. Valdiero, Analytical solution of temperature distributions in radiofrequency ablation due to a point source of electrical current,, 60 Brasilean Conference on Dynamics, (2007), 21.   Google Scholar

[9]

M. J. Rivera, M. Trujillo, V. Romero García, J. A. López Molina and E. J. Berjano, Numerical resolution of the hyperbolic heat equation using smooted mathematical functions instead of Heaviside and dirac delta distributions,, International Communications in Heat and Mass Transfer, 46 (2013), 7.   Google Scholar

[10]

J. D. Wiley and J. G. Webster, Analysis and control of the current distribution under circular dispersive electrodes,, IEEE Transactions on Biomedical Engineering, 29 (1982), 381.  doi: 10.1109/TBME.1982.324910.  Google Scholar

[11]

K. M. Overmyer, J. A. Pearce and D. P. de Witt, Measurements of temperature distributions at electro-surgical dispersive electrode sites,, Transactions of the ASME, 101 (1979), 66.   Google Scholar

[12]

W. M. Honig, The mechanism of cutting in electrosurgery,, IEEE Transactions on Biomedical Engineering, 22 (1975), 58.  doi: 10.1109/TBME.1975.324541.  Google Scholar

[13]

A. Erez and A. Shitzer, Controlled destruction and temperature distributions in biological tissues subjected to monoactive electroagulation,, Journal of Biomechanical Engineering, 102 (1980), 42.   Google Scholar

[14]

D. E. Haines and D. D. Watson, Tissue heating durin radiofrequency catheter ablation: A thermodynamic model and observations in isolated perfused and superfused canine right ventricular free wall,, Pacing and Clinical Electrophysiology, 12 (1989), 962.   Google Scholar

[15]

D. Haemmerich, L. Chachati, A. S. Wright, D. M. Mahvi, F. T. Lee Jr. and J. G. Webster, Hepatic radiofrequency ablation with internally cooled probes: Effect of coolant temperature on lesion size,, IEEE Transactions on Biomedical Engineering, 50 (2003), 493.  doi: 10.1109/TBME.2003.809488.  Google Scholar

[16]

J. A. López Molina, M. J. Rivera, M. Trujillo and E. J. Berjano, Effect of the thermal wave in radiofrequency ablation modeling: An analytical study,, Physics in Medicine and Biology, 53 (2008), 1447.  doi: 10.1088/0031-9155/53/5/018.  Google Scholar

[17]

J. A. López Molina, M. J. Rivera and E. J. Berjano, Analytical model based on a cylindrical geometry to study of RF ablation with needle-like internally cooled electrode,, Mathematical Problems in Engineering, (2012).   Google Scholar

[18]

M. J. Rivera, J. A. López Molina, M. Trujillo and E. J. Berjano, Theoretical modeling of RF ablation with internally cooled electrodes: Comparative study of different thermal boundary conditions at the electrode-tissue interface,, Mathematical Biosciences and Engineering, 6 (2009), 611.  doi: 10.3934/mbe.2009.6.611.  Google Scholar

[19]

G. N. Watson, A Treatise on the Theory of Bessel Functions,, Cambridge Mathematical Library, (1995).   Google Scholar

[20]

E. J. Berjano, E. Navarro, V. Ribera, J. Gorris and J. L. Alió, Radiofrequency heating of the cornea: An engineering review of electrodes and applicators,, Open Biomedical Engineering Journal, 11 (2007), 71.   Google Scholar

[21]

M. Trujillo, J. Alba and E. J. Berjano, Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes,, International Journal of Hyperthermia, 28 (2012), 62.  doi: 10.3109/02656736.2011.631076.  Google Scholar

[22]

I. A. Chang, Finite elements analysis of hepatic radiofrequency ablation probes using temperature-dependent electrical conductivity,, Biomedical Engineering Online, 8 (2003).   Google Scholar

[23]

I. A. Chang and U. D. Nguyen, Thermal modeling of lesions growth with radiofrequency ablation devices,, Biomedical Engineering Online, 6 (2004).   Google Scholar

[1]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021001

[2]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[3]

Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic & Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047

[4]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[5]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

[6]

M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424

[7]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[8]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[9]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[10]

Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020362

[11]

Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140

[12]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[13]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[14]

Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382

[15]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[16]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[17]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[18]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[19]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[20]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]