-
Previous Article
Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay
- MBE Home
- This Issue
-
Next Article
Pattern analysis in a benthic bacteria-nutrient system
Directional entropy based model for diffusivity-driven tumor growth
1. | Robotic Systems Laboratory, Swiss Federal Institute of Technology (EPFL), Lausanne, CH-1015, Switzerland |
2. | Department of Mechanical Engineering, Engineering College of Sorocaba (FACENS), São Paulo, 18087-125, Brazil |
References:
[1] |
B. Brutovsky, D. Horvath and V. Lisy, Inverse geometric approach for the simulation of close-to-circular growth. The case of multicellular tumor spheroids,, Physica A: Statistical Mechanics and its Applications, 387 (2008), 839.
doi: 10.1016/j.physa.2007.10.036. |
[2] |
F. Camastra, Data dimensionality estimation methods: A survey,, Pattern Recognition, 36 (2003), 2945.
doi: 10.1016/S0031-3203(03)00176-6. |
[3] |
P. Castorina and D. Zappalà, Tumor Gompertzian growth by cellular energetic balance,, Physica A: Statistical Mechanics and its Applications, 365 (2006), 473.
doi: 10.1016/j.physa.2005.09.063. |
[4] |
O. Clatz, M. Sermesant, P. yves Bondiau, H. Delingette, S. K. Warfield, G. Mal and N. Ayache, Realistic simulation of the 3d growth of brain tumors in mr images coupling diffusion with mass effect,, IEEE Transactions on Medical Imaging, (): 1334. Google Scholar |
[5] |
C. A. Condat and S. A. Menchón, Ontogenetic growth of multicellular tumor spheroids,, Physica A: Statistical Mechanics and its Applications, 371 (2006), 76.
doi: 10.1016/j.physa.2006.04.082. |
[6] |
F. J. Esteban, J. Sepulcre, N. V. De Mendizábal, J. Goñi, J. Navas, J. R. De Miras, B. Bejarano, J. C. Masdeu and P. Villoslada, Fractal dimension and white matter changes in multiple sclerosis,, NeuroImage, 36 (2007), 543.
doi: 10.1016/j.neuroimage.2007.03.057. |
[7] |
F. J. Esteban, J. Sepulcre, J. R. De Miras, J. Navas, N. V. De Mendizábal, J. Goñi, J. M. A. Quesada, B. Bejarano and P. Villoslada, Fractal dimension analysis of grey matter in multiple sclerosis,, Journal of the Neurological Sciences, 282 (2009), 67.
doi: 10.1016/j.jns.2008.12.023. |
[8] |
E. Fernández and H. F. Jelinek, Use of fractal theory in neuroscience: Methods, advantages, and potential problems,, Methods San Diego Calif, 24 (2001), 309. Google Scholar |
[9] |
A. Giese and M. Westphal, Glioma invasion in the central nervous system,, Neurosurgery, 39 (1996), 235.
doi: 10.1097/00006123-199608000-00001. |
[10] |
C. Hogea, C. Davatzikos and G. Biros, Modeling glioma growth and mass effect in 3D MR images of the brain,, Medical Image Computing and Computer-Assisted Intervention, 4791 (2007), 642.
doi: 10.1007/978-3-540-75757-3_78. |
[11] |
C. Hogea, C. Davatzikos and G. Biros, An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects,, Journal of Mathematical Biology, 56 (2008), 793.
doi: 10.1007/s00285-007-0139-x. |
[12] |
E. Izquierdo-Kulich, I. Rebelo, E. Tejera and J. M. Nieto-Villar, Phase transition in tumor growth: I avascular development,, Physica A: Statistical Mechanics and its Applications, 392 (2013), 6616.
doi: 10.1016/j.physa.2013.08.010. |
[13] |
A. R. Kansal, S. Torquato, I. V. Harsh GR, E. A. Chiocca and T. S. Deisboeck, Simulated brain tumor growth dynamics using a three-dimensional cellular automaton,, Journal of theoretical biology, 203 (2000), 367.
doi: 10.1006/jtbi.2000.2000. |
[14] |
R. D. King, B. Brown, M. Hwang, T. Jeon and A. T. George, Fractal dimension analysis of the cortical ribbon in mild Alzheimer's disease,, NeuroImage, 53 (2010), 471.
doi: 10.1016/j.neuroimage.2010.06.050. |
[15] |
P. D. Lax, A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations,, Communications on Pure and Applied Mathematics, 9 (1956), 747.
doi: 10.1002/cpa.3160090407. |
[16] |
B. B. Mandelbrot, The Fractal Geometry of Nature, vol. 51,, W. H. Freeman, (1982).
|
[17] |
J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications (Interdisciplinary Applied Mathematics) (v. 2),, Third edition. Interdisciplinary Applied Mathematics, (2003).
|
[18] |
T. Neuvonen and E. Salli, Characterizing diffusion tensor imaging data with directional entropy,, Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 6 (2005), 5798.
doi: 10.1109/IEMBS.2005.1615806. |
[19] |
H. Ohgaki and P. Kleihues, Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas,, Journal of neuropathology and experimental neurology, 64 (2005), 479. Google Scholar |
[20] |
E. A. Reis, L. B. L. Santos and S. T. R. Pinho, A cellular automata model for avascular solid tumor growth under the effect of therapy,, Physica A: Statistical Mechanics and its Applications, 388 (2009), 1303.
doi: 10.1016/j.physa.2008.11.038. |
[21] |
C. E. Shannon and W. Weaver, The Mathematical Theory of Information, vol. 97,, University of Illinois Press, (1949).
|
[22] |
S. Sinha, M. E. Bastin, I. R. Whittle and J. M. Wardlaw, Diffusion tensor MR imaging of high-grade cerebral gliomas,, AJNR. American journal of neuroradiology, 23 (2002), 520. Google Scholar |
[23] |
G. S. Stamatakos, N. K. Uzunoglu, K. Delibasis, N. Mouravliansky, A. Marsh and M. Makropoulou, Tumor growth simulation and visualization: A review and a Web based paradigm,, Studies In Health Technology And Informatics, 79 (2000), 255. Google Scholar |
[24] |
T. Takahashi, T. Murata, M. Omori, H. Kosaka, K. Takahashi, Y. Yonekura and Y. Wada, Quantitative evaluation of age-related white matter microstructural changes on MRI by multifractal analysis,, Journal of the Neurological Sciences, 225 (2004), 33.
doi: 10.1016/j.jns.2004.06.016. |
[25] |
D. E. Woodward, J. Cook, P. Tracqui, G. C. Cruywagen, J. D. Murray and E. C. Alvord, A mathematical model of glioma growth: The effect of extent of surgical resection,, Cell Proliferation, 29 (1996), 269.
doi: 10.1111/j.1365-2184.1996.tb01580.x. |
show all references
References:
[1] |
B. Brutovsky, D. Horvath and V. Lisy, Inverse geometric approach for the simulation of close-to-circular growth. The case of multicellular tumor spheroids,, Physica A: Statistical Mechanics and its Applications, 387 (2008), 839.
doi: 10.1016/j.physa.2007.10.036. |
[2] |
F. Camastra, Data dimensionality estimation methods: A survey,, Pattern Recognition, 36 (2003), 2945.
doi: 10.1016/S0031-3203(03)00176-6. |
[3] |
P. Castorina and D. Zappalà, Tumor Gompertzian growth by cellular energetic balance,, Physica A: Statistical Mechanics and its Applications, 365 (2006), 473.
doi: 10.1016/j.physa.2005.09.063. |
[4] |
O. Clatz, M. Sermesant, P. yves Bondiau, H. Delingette, S. K. Warfield, G. Mal and N. Ayache, Realistic simulation of the 3d growth of brain tumors in mr images coupling diffusion with mass effect,, IEEE Transactions on Medical Imaging, (): 1334. Google Scholar |
[5] |
C. A. Condat and S. A. Menchón, Ontogenetic growth of multicellular tumor spheroids,, Physica A: Statistical Mechanics and its Applications, 371 (2006), 76.
doi: 10.1016/j.physa.2006.04.082. |
[6] |
F. J. Esteban, J. Sepulcre, N. V. De Mendizábal, J. Goñi, J. Navas, J. R. De Miras, B. Bejarano, J. C. Masdeu and P. Villoslada, Fractal dimension and white matter changes in multiple sclerosis,, NeuroImage, 36 (2007), 543.
doi: 10.1016/j.neuroimage.2007.03.057. |
[7] |
F. J. Esteban, J. Sepulcre, J. R. De Miras, J. Navas, N. V. De Mendizábal, J. Goñi, J. M. A. Quesada, B. Bejarano and P. Villoslada, Fractal dimension analysis of grey matter in multiple sclerosis,, Journal of the Neurological Sciences, 282 (2009), 67.
doi: 10.1016/j.jns.2008.12.023. |
[8] |
E. Fernández and H. F. Jelinek, Use of fractal theory in neuroscience: Methods, advantages, and potential problems,, Methods San Diego Calif, 24 (2001), 309. Google Scholar |
[9] |
A. Giese and M. Westphal, Glioma invasion in the central nervous system,, Neurosurgery, 39 (1996), 235.
doi: 10.1097/00006123-199608000-00001. |
[10] |
C. Hogea, C. Davatzikos and G. Biros, Modeling glioma growth and mass effect in 3D MR images of the brain,, Medical Image Computing and Computer-Assisted Intervention, 4791 (2007), 642.
doi: 10.1007/978-3-540-75757-3_78. |
[11] |
C. Hogea, C. Davatzikos and G. Biros, An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects,, Journal of Mathematical Biology, 56 (2008), 793.
doi: 10.1007/s00285-007-0139-x. |
[12] |
E. Izquierdo-Kulich, I. Rebelo, E. Tejera and J. M. Nieto-Villar, Phase transition in tumor growth: I avascular development,, Physica A: Statistical Mechanics and its Applications, 392 (2013), 6616.
doi: 10.1016/j.physa.2013.08.010. |
[13] |
A. R. Kansal, S. Torquato, I. V. Harsh GR, E. A. Chiocca and T. S. Deisboeck, Simulated brain tumor growth dynamics using a three-dimensional cellular automaton,, Journal of theoretical biology, 203 (2000), 367.
doi: 10.1006/jtbi.2000.2000. |
[14] |
R. D. King, B. Brown, M. Hwang, T. Jeon and A. T. George, Fractal dimension analysis of the cortical ribbon in mild Alzheimer's disease,, NeuroImage, 53 (2010), 471.
doi: 10.1016/j.neuroimage.2010.06.050. |
[15] |
P. D. Lax, A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations,, Communications on Pure and Applied Mathematics, 9 (1956), 747.
doi: 10.1002/cpa.3160090407. |
[16] |
B. B. Mandelbrot, The Fractal Geometry of Nature, vol. 51,, W. H. Freeman, (1982).
|
[17] |
J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications (Interdisciplinary Applied Mathematics) (v. 2),, Third edition. Interdisciplinary Applied Mathematics, (2003).
|
[18] |
T. Neuvonen and E. Salli, Characterizing diffusion tensor imaging data with directional entropy,, Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 6 (2005), 5798.
doi: 10.1109/IEMBS.2005.1615806. |
[19] |
H. Ohgaki and P. Kleihues, Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas,, Journal of neuropathology and experimental neurology, 64 (2005), 479. Google Scholar |
[20] |
E. A. Reis, L. B. L. Santos and S. T. R. Pinho, A cellular automata model for avascular solid tumor growth under the effect of therapy,, Physica A: Statistical Mechanics and its Applications, 388 (2009), 1303.
doi: 10.1016/j.physa.2008.11.038. |
[21] |
C. E. Shannon and W. Weaver, The Mathematical Theory of Information, vol. 97,, University of Illinois Press, (1949).
|
[22] |
S. Sinha, M. E. Bastin, I. R. Whittle and J. M. Wardlaw, Diffusion tensor MR imaging of high-grade cerebral gliomas,, AJNR. American journal of neuroradiology, 23 (2002), 520. Google Scholar |
[23] |
G. S. Stamatakos, N. K. Uzunoglu, K. Delibasis, N. Mouravliansky, A. Marsh and M. Makropoulou, Tumor growth simulation and visualization: A review and a Web based paradigm,, Studies In Health Technology And Informatics, 79 (2000), 255. Google Scholar |
[24] |
T. Takahashi, T. Murata, M. Omori, H. Kosaka, K. Takahashi, Y. Yonekura and Y. Wada, Quantitative evaluation of age-related white matter microstructural changes on MRI by multifractal analysis,, Journal of the Neurological Sciences, 225 (2004), 33.
doi: 10.1016/j.jns.2004.06.016. |
[25] |
D. E. Woodward, J. Cook, P. Tracqui, G. C. Cruywagen, J. D. Murray and E. C. Alvord, A mathematical model of glioma growth: The effect of extent of surgical resection,, Cell Proliferation, 29 (1996), 269.
doi: 10.1111/j.1365-2184.1996.tb01580.x. |
[1] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[2] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[3] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[4] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]