• Previous Article
    Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds
  • MBE Home
  • This Issue
  • Next Article
    Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay
2016, 13(2): 369-380. doi: 10.3934/mbe.2015007

Flocking and invariance of velocity angles

1. 

College of Mathematics and Econometrics, Hunan University, Changsha, Hunan, 410082, China

2. 

College of Mathematics and Econometrics, Hunan University & Hunan Women's University, Changsha, Hunan, 410004

3. 

Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON, M3J 1P3

Received  November 2014 Revised  May 2015 Published  December 2015

Motsch and Tadmor considered an extended Cucker-Smale model to investigate the flocking behavior of self-organized systems of interacting species. In this extended model, a cone of the vision was introduced so that outside the cone the influence of one agent on the other is lost and hence the corresponding influence function takes the value zero. This creates a problem to apply the Motsch-Tadmor and Cucker-Smale method to prove the flocking property of the system. Here, we examine the variation of the velocity angles between two arbitrary agents, and obtain a monotonicity property for the maximum cone of velocity angles. This monotonicity permits us to utilize existing arguments to show the flocking property of the system under consideration, when the initial velocity angles satisfy some minor technical constraints.
Citation: Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369-380. doi: 10.3934/mbe.2015007
References:
[1]

J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model,, SIAM J. Math. Anal., 42 (2010), 218.  doi: 10.1137/090757290.  Google Scholar

[2]

I. D. Couzin, J. Krause, N. R. Franks and S. Levin, Effective leadership and decision making in animal groups on the move,, Nature, 433 (2005), 513.  doi: 10.1038/nature03236.  Google Scholar

[3]

F. Cucker and S. Smale, Lectures on emergence,, Japan J. Math., 2 (2007), 197.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[4]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[5]

F. Cucker, S. Smale and D. Zhou, Modeling language evolution,, Found. Comput. Math., 4 (2004), 315.  doi: 10.1007/s10208-003-0101-2.  Google Scholar

[6]

S. Y. Ha and J. G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit,, Commun. Math. Sci., 7 (2009), 297.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[7]

S. Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking,, Kinet. Relat.Models, 1 (2008), 415.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[8]

Y. Liu and K. Passino, Stable social foraging swarms in a noisy environment,, IEEE Trans. Automat. Control, 49 (2004), 30.  doi: 10.1109/TAC.2003.821416.  Google Scholar

[9]

S. Motsch and E. Tadmor, A new model for Self-organized dynamics and its flocking behavior,, J. Stat. Phys., 144 (2011), 923.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[10]

C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model,, In: ACM SIGGRAPH Computer Graphics, 21 (1987), 25.  doi: 10.1145/37401.37406.  Google Scholar

[11]

J. Shen, Cucker-Smale flocking under hierarchical leadership,, SIAM J. Appl. Math., 68 (2008), 694.  doi: 10.1137/060673254.  Google Scholar

[12]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups,, SIAM J. Appl. Math., 65 (2004), 152.  doi: 10.1137/S0036139903437424.  Google Scholar

[13]

C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation,, Bull. Math. Bio., 68 (2006), 1601.  doi: 10.1007/s11538-006-9088-6.  Google Scholar

[14]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

show all references

References:
[1]

J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model,, SIAM J. Math. Anal., 42 (2010), 218.  doi: 10.1137/090757290.  Google Scholar

[2]

I. D. Couzin, J. Krause, N. R. Franks and S. Levin, Effective leadership and decision making in animal groups on the move,, Nature, 433 (2005), 513.  doi: 10.1038/nature03236.  Google Scholar

[3]

F. Cucker and S. Smale, Lectures on emergence,, Japan J. Math., 2 (2007), 197.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[4]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[5]

F. Cucker, S. Smale and D. Zhou, Modeling language evolution,, Found. Comput. Math., 4 (2004), 315.  doi: 10.1007/s10208-003-0101-2.  Google Scholar

[6]

S. Y. Ha and J. G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit,, Commun. Math. Sci., 7 (2009), 297.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[7]

S. Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking,, Kinet. Relat.Models, 1 (2008), 415.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[8]

Y. Liu and K. Passino, Stable social foraging swarms in a noisy environment,, IEEE Trans. Automat. Control, 49 (2004), 30.  doi: 10.1109/TAC.2003.821416.  Google Scholar

[9]

S. Motsch and E. Tadmor, A new model for Self-organized dynamics and its flocking behavior,, J. Stat. Phys., 144 (2011), 923.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[10]

C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model,, In: ACM SIGGRAPH Computer Graphics, 21 (1987), 25.  doi: 10.1145/37401.37406.  Google Scholar

[11]

J. Shen, Cucker-Smale flocking under hierarchical leadership,, SIAM J. Appl. Math., 68 (2008), 694.  doi: 10.1137/060673254.  Google Scholar

[12]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups,, SIAM J. Appl. Math., 65 (2004), 152.  doi: 10.1137/S0036139903437424.  Google Scholar

[13]

C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation,, Bull. Math. Bio., 68 (2006), 1601.  doi: 10.1007/s11538-006-9088-6.  Google Scholar

[14]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[1]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[2]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[3]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[4]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[5]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[6]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[7]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[8]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[9]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[10]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[11]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[12]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[13]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[14]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[15]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[16]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[17]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[18]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[19]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[20]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]