• Previous Article
    Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds
  • MBE Home
  • This Issue
  • Next Article
    Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay
2016, 13(2): 369-380. doi: 10.3934/mbe.2015007

Flocking and invariance of velocity angles

1. 

College of Mathematics and Econometrics, Hunan University, Changsha, Hunan, 410082, China

2. 

College of Mathematics and Econometrics, Hunan University & Hunan Women's University, Changsha, Hunan, 410004

3. 

Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON, M3J 1P3

Received  November 2014 Revised  May 2015 Published  December 2015

Motsch and Tadmor considered an extended Cucker-Smale model to investigate the flocking behavior of self-organized systems of interacting species. In this extended model, a cone of the vision was introduced so that outside the cone the influence of one agent on the other is lost and hence the corresponding influence function takes the value zero. This creates a problem to apply the Motsch-Tadmor and Cucker-Smale method to prove the flocking property of the system. Here, we examine the variation of the velocity angles between two arbitrary agents, and obtain a monotonicity property for the maximum cone of velocity angles. This monotonicity permits us to utilize existing arguments to show the flocking property of the system under consideration, when the initial velocity angles satisfy some minor technical constraints.
Citation: Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369-380. doi: 10.3934/mbe.2015007
References:
[1]

J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model,, SIAM J. Math. Anal., 42 (2010), 218.  doi: 10.1137/090757290.  Google Scholar

[2]

I. D. Couzin, J. Krause, N. R. Franks and S. Levin, Effective leadership and decision making in animal groups on the move,, Nature, 433 (2005), 513.  doi: 10.1038/nature03236.  Google Scholar

[3]

F. Cucker and S. Smale, Lectures on emergence,, Japan J. Math., 2 (2007), 197.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[4]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[5]

F. Cucker, S. Smale and D. Zhou, Modeling language evolution,, Found. Comput. Math., 4 (2004), 315.  doi: 10.1007/s10208-003-0101-2.  Google Scholar

[6]

S. Y. Ha and J. G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit,, Commun. Math. Sci., 7 (2009), 297.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[7]

S. Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking,, Kinet. Relat.Models, 1 (2008), 415.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[8]

Y. Liu and K. Passino, Stable social foraging swarms in a noisy environment,, IEEE Trans. Automat. Control, 49 (2004), 30.  doi: 10.1109/TAC.2003.821416.  Google Scholar

[9]

S. Motsch and E. Tadmor, A new model for Self-organized dynamics and its flocking behavior,, J. Stat. Phys., 144 (2011), 923.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[10]

C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model,, In: ACM SIGGRAPH Computer Graphics, 21 (1987), 25.  doi: 10.1145/37401.37406.  Google Scholar

[11]

J. Shen, Cucker-Smale flocking under hierarchical leadership,, SIAM J. Appl. Math., 68 (2008), 694.  doi: 10.1137/060673254.  Google Scholar

[12]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups,, SIAM J. Appl. Math., 65 (2004), 152.  doi: 10.1137/S0036139903437424.  Google Scholar

[13]

C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation,, Bull. Math. Bio., 68 (2006), 1601.  doi: 10.1007/s11538-006-9088-6.  Google Scholar

[14]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

show all references

References:
[1]

J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model,, SIAM J. Math. Anal., 42 (2010), 218.  doi: 10.1137/090757290.  Google Scholar

[2]

I. D. Couzin, J. Krause, N. R. Franks and S. Levin, Effective leadership and decision making in animal groups on the move,, Nature, 433 (2005), 513.  doi: 10.1038/nature03236.  Google Scholar

[3]

F. Cucker and S. Smale, Lectures on emergence,, Japan J. Math., 2 (2007), 197.  doi: 10.1007/s11537-007-0647-x.  Google Scholar

[4]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852.  doi: 10.1109/TAC.2007.895842.  Google Scholar

[5]

F. Cucker, S. Smale and D. Zhou, Modeling language evolution,, Found. Comput. Math., 4 (2004), 315.  doi: 10.1007/s10208-003-0101-2.  Google Scholar

[6]

S. Y. Ha and J. G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit,, Commun. Math. Sci., 7 (2009), 297.  doi: 10.4310/CMS.2009.v7.n2.a2.  Google Scholar

[7]

S. Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking,, Kinet. Relat.Models, 1 (2008), 415.  doi: 10.3934/krm.2008.1.415.  Google Scholar

[8]

Y. Liu and K. Passino, Stable social foraging swarms in a noisy environment,, IEEE Trans. Automat. Control, 49 (2004), 30.  doi: 10.1109/TAC.2003.821416.  Google Scholar

[9]

S. Motsch and E. Tadmor, A new model for Self-organized dynamics and its flocking behavior,, J. Stat. Phys., 144 (2011), 923.  doi: 10.1007/s10955-011-0285-9.  Google Scholar

[10]

C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model,, In: ACM SIGGRAPH Computer Graphics, 21 (1987), 25.  doi: 10.1145/37401.37406.  Google Scholar

[11]

J. Shen, Cucker-Smale flocking under hierarchical leadership,, SIAM J. Appl. Math., 68 (2008), 694.  doi: 10.1137/060673254.  Google Scholar

[12]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups,, SIAM J. Appl. Math., 65 (2004), 152.  doi: 10.1137/S0036139903437424.  Google Scholar

[13]

C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation,, Bull. Math. Bio., 68 (2006), 1601.  doi: 10.1007/s11538-006-9088-6.  Google Scholar

[14]

T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.  doi: 10.1103/PhysRevLett.75.1226.  Google Scholar

[1]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[2]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[3]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[6]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[7]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[8]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[9]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[10]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[11]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[12]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[13]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[14]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[15]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]