-
Previous Article
Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds
- MBE Home
- This Issue
-
Next Article
Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay
Flocking and invariance of velocity angles
1. | College of Mathematics and Econometrics, Hunan University, Changsha, Hunan, 410082, China |
2. | College of Mathematics and Econometrics, Hunan University & Hunan Women's University, Changsha, Hunan, 410004 |
3. | Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON, M3J 1P3 |
References:
[1] |
J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model,, SIAM J. Math. Anal., 42 (2010), 218.
doi: 10.1137/090757290. |
[2] |
I. D. Couzin, J. Krause, N. R. Franks and S. Levin, Effective leadership and decision making in animal groups on the move,, Nature, 433 (2005), 513.
doi: 10.1038/nature03236. |
[3] |
F. Cucker and S. Smale, Lectures on emergence,, Japan J. Math., 2 (2007), 197.
doi: 10.1007/s11537-007-0647-x. |
[4] |
F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852.
doi: 10.1109/TAC.2007.895842. |
[5] |
F. Cucker, S. Smale and D. Zhou, Modeling language evolution,, Found. Comput. Math., 4 (2004), 315.
doi: 10.1007/s10208-003-0101-2. |
[6] |
S. Y. Ha and J. G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit,, Commun. Math. Sci., 7 (2009), 297.
doi: 10.4310/CMS.2009.v7.n2.a2. |
[7] |
S. Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking,, Kinet. Relat.Models, 1 (2008), 415.
doi: 10.3934/krm.2008.1.415. |
[8] |
Y. Liu and K. Passino, Stable social foraging swarms in a noisy environment,, IEEE Trans. Automat. Control, 49 (2004), 30.
doi: 10.1109/TAC.2003.821416. |
[9] |
S. Motsch and E. Tadmor, A new model for Self-organized dynamics and its flocking behavior,, J. Stat. Phys., 144 (2011), 923.
doi: 10.1007/s10955-011-0285-9. |
[10] |
C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model,, In: ACM SIGGRAPH Computer Graphics, 21 (1987), 25.
doi: 10.1145/37401.37406. |
[11] |
J. Shen, Cucker-Smale flocking under hierarchical leadership,, SIAM J. Appl. Math., 68 (2008), 694.
doi: 10.1137/060673254. |
[12] |
C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups,, SIAM J. Appl. Math., 65 (2004), 152.
doi: 10.1137/S0036139903437424. |
[13] |
C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation,, Bull. Math. Bio., 68 (2006), 1601.
doi: 10.1007/s11538-006-9088-6. |
[14] |
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.
doi: 10.1103/PhysRevLett.75.1226. |
show all references
References:
[1] |
J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model,, SIAM J. Math. Anal., 42 (2010), 218.
doi: 10.1137/090757290. |
[2] |
I. D. Couzin, J. Krause, N. R. Franks and S. Levin, Effective leadership and decision making in animal groups on the move,, Nature, 433 (2005), 513.
doi: 10.1038/nature03236. |
[3] |
F. Cucker and S. Smale, Lectures on emergence,, Japan J. Math., 2 (2007), 197.
doi: 10.1007/s11537-007-0647-x. |
[4] |
F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852.
doi: 10.1109/TAC.2007.895842. |
[5] |
F. Cucker, S. Smale and D. Zhou, Modeling language evolution,, Found. Comput. Math., 4 (2004), 315.
doi: 10.1007/s10208-003-0101-2. |
[6] |
S. Y. Ha and J. G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit,, Commun. Math. Sci., 7 (2009), 297.
doi: 10.4310/CMS.2009.v7.n2.a2. |
[7] |
S. Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking,, Kinet. Relat.Models, 1 (2008), 415.
doi: 10.3934/krm.2008.1.415. |
[8] |
Y. Liu and K. Passino, Stable social foraging swarms in a noisy environment,, IEEE Trans. Automat. Control, 49 (2004), 30.
doi: 10.1109/TAC.2003.821416. |
[9] |
S. Motsch and E. Tadmor, A new model for Self-organized dynamics and its flocking behavior,, J. Stat. Phys., 144 (2011), 923.
doi: 10.1007/s10955-011-0285-9. |
[10] |
C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model,, In: ACM SIGGRAPH Computer Graphics, 21 (1987), 25.
doi: 10.1145/37401.37406. |
[11] |
J. Shen, Cucker-Smale flocking under hierarchical leadership,, SIAM J. Appl. Math., 68 (2008), 694.
doi: 10.1137/060673254. |
[12] |
C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups,, SIAM J. Appl. Math., 65 (2004), 152.
doi: 10.1137/S0036139903437424. |
[13] |
C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation,, Bull. Math. Bio., 68 (2006), 1601.
doi: 10.1007/s11538-006-9088-6. |
[14] |
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles,, Phys. Rev. Lett., 75 (1995), 1226.
doi: 10.1103/PhysRevLett.75.1226. |
[1] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[2] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[3] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[4] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[5] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[6] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[7] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[8] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[9] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[10] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[11] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[12] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[13] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[14] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[15] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[16] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[17] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[18] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[19] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[20] |
Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]