American Institute of Mathematical Sciences

• Previous Article
Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds
• MBE Home
• This Issue
• Next Article
Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay
2016, 13(2): 369-380. doi: 10.3934/mbe.2015007

Flocking and invariance of velocity angles

 1 College of Mathematics and Econometrics, Hunan University, Changsha, Hunan, 410082, China 2 College of Mathematics and Econometrics, Hunan University & Hunan Women's University, Changsha, Hunan, 410004 3 Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON, M3J 1P3

Received  November 2014 Revised  May 2015 Published  December 2015

Motsch and Tadmor considered an extended Cucker-Smale model to investigate the flocking behavior of self-organized systems of interacting species. In this extended model, a cone of the vision was introduced so that outside the cone the influence of one agent on the other is lost and hence the corresponding influence function takes the value zero. This creates a problem to apply the Motsch-Tadmor and Cucker-Smale method to prove the flocking property of the system. Here, we examine the variation of the velocity angles between two arbitrary agents, and obtain a monotonicity property for the maximum cone of velocity angles. This monotonicity permits us to utilize existing arguments to show the flocking property of the system under consideration, when the initial velocity angles satisfy some minor technical constraints.
Citation: Le Li, Lihong Huang, Jianhong Wu. Flocking and invariance of velocity angles. Mathematical Biosciences & Engineering, 2016, 13 (2) : 369-380. doi: 10.3934/mbe.2015007
References:
 [1] J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236. doi: 10.1137/090757290. [2] I. D. Couzin, J. Krause, N. R. Franks and S. Levin, Effective leadership and decision making in animal groups on the move, Nature, 433 (2005), 513-516. doi: 10.1038/nature03236. [3] F. Cucker and S. Smale, Lectures on emergence, Japan J. Math., 2 (2007), 197-227. doi: 10.1007/s11537-007-0647-x. [4] F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842. [5] F. Cucker, S. Smale and D. Zhou, Modeling language evolution, Found. Comput. Math., 4 (2004), 315-343. doi: 10.1007/s10208-003-0101-2. [6] S. Y. Ha and J. G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325. doi: 10.4310/CMS.2009.v7.n2.a2. [7] S. Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat.Models, 1 (2008), 415-435. doi: 10.3934/krm.2008.1.415. [8] Y. Liu and K. Passino, Stable social foraging swarms in a noisy environment, IEEE Trans. Automat. Control, 49 (2004), 30-44. doi: 10.1109/TAC.2003.821416. [9] S. Motsch and E. Tadmor, A new model for Self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947. doi: 10.1007/s10955-011-0285-9. [10] C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, In: ACM SIGGRAPH Computer Graphics, 21 (1987), 25-34. doi: 10.1145/37401.37406. [11] J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2008), 694-719. doi: 10.1137/060673254. [12] C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174. doi: 10.1137/S0036139903437424. [13] C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Bio., 68 (2006), 1601-1623. doi: 10.1007/s11538-006-9088-6. [14] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1225. doi: 10.1103/PhysRevLett.75.1226.

show all references

References:
 [1] J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236. doi: 10.1137/090757290. [2] I. D. Couzin, J. Krause, N. R. Franks and S. Levin, Effective leadership and decision making in animal groups on the move, Nature, 433 (2005), 513-516. doi: 10.1038/nature03236. [3] F. Cucker and S. Smale, Lectures on emergence, Japan J. Math., 2 (2007), 197-227. doi: 10.1007/s11537-007-0647-x. [4] F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842. [5] F. Cucker, S. Smale and D. Zhou, Modeling language evolution, Found. Comput. Math., 4 (2004), 315-343. doi: 10.1007/s10208-003-0101-2. [6] S. Y. Ha and J. G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325. doi: 10.4310/CMS.2009.v7.n2.a2. [7] S. Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat.Models, 1 (2008), 415-435. doi: 10.3934/krm.2008.1.415. [8] Y. Liu and K. Passino, Stable social foraging swarms in a noisy environment, IEEE Trans. Automat. Control, 49 (2004), 30-44. doi: 10.1109/TAC.2003.821416. [9] S. Motsch and E. Tadmor, A new model for Self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947. doi: 10.1007/s10955-011-0285-9. [10] C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, In: ACM SIGGRAPH Computer Graphics, 21 (1987), 25-34. doi: 10.1145/37401.37406. [11] J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2008), 694-719. doi: 10.1137/060673254. [12] C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174. doi: 10.1137/S0036139903437424. [13] C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Bio., 68 (2006), 1601-1623. doi: 10.1007/s11538-006-9088-6. [14] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1225. doi: 10.1103/PhysRevLett.75.1226.
 [1] Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic and Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381 [2] Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergent dynamics of an orientation flocking model for multi-agent system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2037-2060. doi: 10.3934/dcds.2020105 [3] Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251 [4] Maoli Chen, Yicheng Liu, Xiao Wang. Delay-dependent flocking dynamics of a two-group coupling system. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022099 [5] Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure and Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689 [6] Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134 [7] Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177 [8] Benedetta Lisena. Dynamic behaviour of a periodic competitive system with pulses. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 723-729. doi: 10.3934/dcdss.2013.6.723 [9] Le Li, Lihong Huang, Jianhong Wu. Cascade flocking with free-will. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 497-522. doi: 10.3934/dcdsb.2016.21.497 [10] Roman Shvydkoy, Eitan Tadmor. Eulerian dynamics with a commutator forcing Ⅱ: Flocking. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5503-5520. doi: 10.3934/dcds.2017239 [11] Hyeong-Ohk Bae, Seung Yeon Cho, Jane Yoo, Seok-Bae Yun. Effect of time delay on flocking dynamics. Networks and Heterogeneous Media, 2022  doi: 10.3934/nhm.2022027 [12] Lihui Guo, Wancheng Sheng, Tong Zhang. The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system$^*$. Communications on Pure and Applied Analysis, 2010, 9 (2) : 431-458. doi: 10.3934/cpaa.2010.9.431 [13] Nguyen Huu Du, Nguyen Thanh Dieu, Tran Dinh Tuong. Dynamic behavior of a stochastic predator-prey system under regime switching. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3483-3498. doi: 10.3934/dcdsb.2017176 [14] Laurence Cherfils, Stefania Gatti, Alain Miranville. Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2261-2290. doi: 10.3934/cpaa.2012.11.2261 [15] Fanghua Lin, Chun Liu. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 1-22. doi: 10.3934/dcds.1996.2.1 [16] Yanan Mao, Caixia Gao, Ruidong Yan, Aruna Bai. Modeling and identification of hybrid dynamic system in microbial continuous fermentation. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 359-368. doi: 10.3934/naco.2015.5.359 [17] Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353 [18] Carl. T. Kelley, Liqun Qi, Xiaojiao Tong, Hongxia Yin. Finding a stable solution of a system of nonlinear equations arising from dynamic systems. Journal of Industrial and Management Optimization, 2011, 7 (2) : 497-521. doi: 10.3934/jimo.2011.7.497 [19] Ruikuan Liu, Dongpei Zhang. Dynamic transitions for the S-K-T competition system. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021277 [20] Balasubramanian Krishna Kumar, Ramachandran Navaneetha Krishnan, Rathinam Sankar, Ramasamy Rukmani. Analysis of dynamic service system between regular and retrial queues with impatient customers. Journal of Industrial and Management Optimization, 2022, 18 (1) : 267-295. doi: 10.3934/jimo.2020153

2018 Impact Factor: 1.313