-
Previous Article
A mathematical model for the spread of west nile virus in migratory and resident birds
- MBE Home
- This Issue
-
Next Article
Flocking and invariance of velocity angles
Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds
1. | Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada |
References:
[1] |
F. Brauer and P. van den Driessche, Models for transmission of disease with immigration of infectives, Math. Biosci., 171 (2001), 143-154.
doi: 10.1016/S0025-5564(01)00057-8. |
[2] |
R. D. Demasse and A. Ducrot, An age-structured within-host model for multistrain malaria infections, SIAM J. Appl. Math., 73 (2013), 572-593.
doi: 10.1137/120890351. |
[3] |
Z. Feng and H. Thieme, Endemic models with arbitrarily distributed periods of infection I: Fundamental properties of the model, SIAM J. Appl. Math., 61 (2000), 803-833.
doi: 10.1137/S0036139998347834. |
[4] |
H. Guo and M. Y. Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2413-2430.
doi: 10.3934/dcdsb.2012.17.2413. |
[5] |
H. Guo and J. Wu, Persistent high incidence of tuberculosis among immigrants in a low-incidence country: impact of immigrants with early or late latency. Math. Biosci. Eng., 8 (2011), 695-709.
doi: 10.3934/mbe.2011.8.695. |
[6] |
S. Henshaw and C. C. McCluskey, Global stability of a vaccination model with immigration, Elect. J. Diff. Eqns., 2015 (2015), 1-10. |
[7] |
W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London, Ser. A, 115 (1927), 700-721. |
[8] |
A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 1 (2004), 57-60.
doi: 10.3934/mbe.2004.1.57. |
[9] |
P. Magal and C. C. McCluskey, Two-group infection age model including an application to nosocomial infection, SIAM J. Appl. Math., 73 (2013), 1058-1095.
doi: 10.1137/120882056. |
[10] |
P. Magal, C. C. McCluskey and G. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Applicable Analysis, 89 (2010), 1109-1140.
doi: 10.1080/00036810903208122. |
[11] |
C. C. McCluskey, Complete global stability for an SIR epidemic model with delay - distributed or discrete, Nonlinear Anal. RWA, 11 (2010), 55-59.
doi: 10.1016/j.nonrwa.2008.10.014. |
[12] |
C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Math. Biosci. Eng., 9 (2012), 819-841.
doi: 10.3934/mbe.2012.9.819. |
[13] |
C. C. McCluskey and P. van den Driessche, Global analysis of two tuberculosis models, J. Dynam. Differential Equations, 16 (2004), 139-166.
doi: 10.1023/B:JODY.0000041283.66784.3e. |
[14] |
G. Röst and J. Wu, SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. and Eng., 5 (2008), 389-402.
doi: 10.3934/mbe.2008.5.389. |
[15] |
R. P. Sigdel and C. C. McCluskey, Disease dynamics for the hometown of migrant workers, Math. Biosci. Eng., 11 (2014), 1175-1180.
doi: 10.3934/mbe.2014.11.1175. |
[16] |
R. P. Sigdel and C. C. McCluskey, Global stability for an SEI model of infectious disease with immigration, Appl. Math. Comput., 243 (2014), 684-689.
doi: 10.1016/j.amc.2014.06.020. |
[17] |
H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Amer. Math. Soc., Providence, 2011. |
[18] |
H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math., 53 (1993), 1447-1479.
doi: 10.1137/0153068. |
[19] |
Lin Wang and Xiao Wang, Influence of temporary migration on the transmission of infectious diseases in a migrants' home village, J. Theoret. Biol., 300 (2012), 100-109.
doi: 10.1016/j.jtbi.2012.01.004. |
[20] |
G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985. |
show all references
References:
[1] |
F. Brauer and P. van den Driessche, Models for transmission of disease with immigration of infectives, Math. Biosci., 171 (2001), 143-154.
doi: 10.1016/S0025-5564(01)00057-8. |
[2] |
R. D. Demasse and A. Ducrot, An age-structured within-host model for multistrain malaria infections, SIAM J. Appl. Math., 73 (2013), 572-593.
doi: 10.1137/120890351. |
[3] |
Z. Feng and H. Thieme, Endemic models with arbitrarily distributed periods of infection I: Fundamental properties of the model, SIAM J. Appl. Math., 61 (2000), 803-833.
doi: 10.1137/S0036139998347834. |
[4] |
H. Guo and M. Y. Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2413-2430.
doi: 10.3934/dcdsb.2012.17.2413. |
[5] |
H. Guo and J. Wu, Persistent high incidence of tuberculosis among immigrants in a low-incidence country: impact of immigrants with early or late latency. Math. Biosci. Eng., 8 (2011), 695-709.
doi: 10.3934/mbe.2011.8.695. |
[6] |
S. Henshaw and C. C. McCluskey, Global stability of a vaccination model with immigration, Elect. J. Diff. Eqns., 2015 (2015), 1-10. |
[7] |
W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London, Ser. A, 115 (1927), 700-721. |
[8] |
A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence, Math. Biosci. Eng., 1 (2004), 57-60.
doi: 10.3934/mbe.2004.1.57. |
[9] |
P. Magal and C. C. McCluskey, Two-group infection age model including an application to nosocomial infection, SIAM J. Appl. Math., 73 (2013), 1058-1095.
doi: 10.1137/120882056. |
[10] |
P. Magal, C. C. McCluskey and G. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Applicable Analysis, 89 (2010), 1109-1140.
doi: 10.1080/00036810903208122. |
[11] |
C. C. McCluskey, Complete global stability for an SIR epidemic model with delay - distributed or discrete, Nonlinear Anal. RWA, 11 (2010), 55-59.
doi: 10.1016/j.nonrwa.2008.10.014. |
[12] |
C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Math. Biosci. Eng., 9 (2012), 819-841.
doi: 10.3934/mbe.2012.9.819. |
[13] |
C. C. McCluskey and P. van den Driessche, Global analysis of two tuberculosis models, J. Dynam. Differential Equations, 16 (2004), 139-166.
doi: 10.1023/B:JODY.0000041283.66784.3e. |
[14] |
G. Röst and J. Wu, SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. and Eng., 5 (2008), 389-402.
doi: 10.3934/mbe.2008.5.389. |
[15] |
R. P. Sigdel and C. C. McCluskey, Disease dynamics for the hometown of migrant workers, Math. Biosci. Eng., 11 (2014), 1175-1180.
doi: 10.3934/mbe.2014.11.1175. |
[16] |
R. P. Sigdel and C. C. McCluskey, Global stability for an SEI model of infectious disease with immigration, Appl. Math. Comput., 243 (2014), 684-689.
doi: 10.1016/j.amc.2014.06.020. |
[17] |
H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Amer. Math. Soc., Providence, 2011. |
[18] |
H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math., 53 (1993), 1447-1479.
doi: 10.1137/0153068. |
[19] |
Lin Wang and Xiao Wang, Influence of temporary migration on the transmission of infectious diseases in a migrants' home village, J. Theoret. Biol., 300 (2012), 100-109.
doi: 10.1016/j.jtbi.2012.01.004. |
[20] |
G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985. |
[1] |
C. Connell McCluskey. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. Mathematical Biosciences & Engineering, 2012, 9 (4) : 819-841. doi: 10.3934/mbe.2012.9.819 |
[2] |
Yicang Zhou, Zhien Ma. Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences & Engineering, 2009, 6 (2) : 409-425. doi: 10.3934/mbe.2009.6.409 |
[3] |
Shanjing Ren. Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1337-1360. doi: 10.3934/mbe.2017069 |
[4] |
Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369 |
[5] |
Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009 |
[6] |
Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641 |
[7] |
Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449-469. doi: 10.3934/mbe.2014.11.449 |
[8] |
Sibel Senan, Eylem Yucel, Zeynep Orman, Ruya Samli, Sabri Arik. A Novel Lyapunov functional with application to stability analysis of neutral systems with nonlinear disturbances. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1415-1428. doi: 10.3934/dcdss.2020358 |
[9] |
Connell McCluskey. Lyapunov functions for disease models with immigration of infected hosts. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4479-4491. doi: 10.3934/dcdsb.2020296 |
[10] |
C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603 |
[11] |
Suxia Zhang, Hongbin Guo, Robert Smith?. Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1291-1313. doi: 10.3934/mbe.2018060 |
[12] |
Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643 |
[13] |
Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971 |
[14] |
Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1159-1167. doi: 10.3934/dcdsb.2019214 |
[15] |
Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173 |
[16] |
Georgi Kapitanov. A double age-structured model of the co-infection of tuberculosis and HIV. Mathematical Biosciences & Engineering, 2015, 12 (1) : 23-40. doi: 10.3934/mbe.2015.12.23 |
[17] |
Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with generalized nonlinear incidence and vaccination age. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 977-996. doi: 10.3934/dcdsb.2016.21.977 |
[18] |
Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1083-1106. doi: 10.3934/mbe.2015.12.1083 |
[19] |
Jinliang Wang, Xianning Liu, Toshikazu Kuniya, Jingmei Pang. Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2795-2812. doi: 10.3934/dcdsb.2017151 |
[20] |
Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]