2016, 13(2): 381-400. doi: 10.3934/mbe.2015008

Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds

1. 

Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada

Received  May 2015 Revised  September 2015 Published  December 2015

We study a model of disease transmission with continuous age-structure for latently infected individuals and for infectious individuals and with immigration of new individuals into the susceptible, latent and infectious classes. The model is very appropriate for tuberculosis. A Lyapunov functional is used to show that the unique endemic equilibrium is globally stable for all parameter values.
Citation: C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008
References:
[1]

F. Brauer and P. van den Driessche, Models for transmission of disease with immigration of infectives,, Math. Biosci., 171 (2001), 143.  doi: 10.1016/S0025-5564(01)00057-8.  Google Scholar

[2]

R. D. Demasse and A. Ducrot, An age-structured within-host model for multistrain malaria infections,, SIAM J. Appl. Math., 73 (2013), 572.  doi: 10.1137/120890351.  Google Scholar

[3]

Z. Feng and H. Thieme, Endemic models with arbitrarily distributed periods of infection I: Fundamental properties of the model,, SIAM J. Appl. Math., 61 (2000), 803.  doi: 10.1137/S0036139998347834.  Google Scholar

[4]

H. Guo and M. Y. Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2413.  doi: 10.3934/dcdsb.2012.17.2413.  Google Scholar

[5]

H. Guo and J. Wu, Persistent high incidence of tuberculosis among immigrants in a low-incidence country: impact of immigrants with early or late latency., Math. Biosci. Eng., 8 (2011), 695.  doi: 10.3934/mbe.2011.8.695.  Google Scholar

[6]

S. Henshaw and C. C. McCluskey, Global stability of a vaccination model with immigration,, Elect. J. Diff. Eqns., 2015 (2015), 1.   Google Scholar

[7]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics,, Proc. R. Soc. London, 115 (1927), 700.   Google Scholar

[8]

A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence,, Math. Biosci. Eng., 1 (2004), 57.  doi: 10.3934/mbe.2004.1.57.  Google Scholar

[9]

P. Magal and C. C. McCluskey, Two-group infection age model including an application to nosocomial infection,, SIAM J. Appl. Math., 73 (2013), 1058.  doi: 10.1137/120882056.  Google Scholar

[10]

P. Magal, C. C. McCluskey and G. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Applicable Analysis, 89 (2010), 1109.  doi: 10.1080/00036810903208122.  Google Scholar

[11]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay - distributed or discrete,, Nonlinear Anal. RWA, 11 (2010), 55.  doi: 10.1016/j.nonrwa.2008.10.014.  Google Scholar

[12]

C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes,, Math. Biosci. Eng., 9 (2012), 819.  doi: 10.3934/mbe.2012.9.819.  Google Scholar

[13]

C. C. McCluskey and P. van den Driessche, Global analysis of two tuberculosis models,, J. Dynam. Differential Equations, 16 (2004), 139.  doi: 10.1023/B:JODY.0000041283.66784.3e.  Google Scholar

[14]

G. Röst and J. Wu, SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. and Eng., 5 (2008), 389.  doi: 10.3934/mbe.2008.5.389.  Google Scholar

[15]

R. P. Sigdel and C. C. McCluskey, Disease dynamics for the hometown of migrant workers,, Math. Biosci. Eng., 11 (2014), 1175.  doi: 10.3934/mbe.2014.11.1175.  Google Scholar

[16]

R. P. Sigdel and C. C. McCluskey, Global stability for an SEI model of infectious disease with immigration,, Appl. Math. Comput., 243 (2014), 684.  doi: 10.1016/j.amc.2014.06.020.  Google Scholar

[17]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence,, Amer. Math. Soc., (2011).   Google Scholar

[18]

H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS?,, SIAM J. Appl. Math., 53 (1993), 1447.  doi: 10.1137/0153068.  Google Scholar

[19]

Lin Wang and Xiao Wang, Influence of temporary migration on the transmission of infectious diseases in a migrants' home village,, J. Theoret. Biol., 300 (2012), 100.  doi: 10.1016/j.jtbi.2012.01.004.  Google Scholar

[20]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics,, Marcel Dekker, (1985).   Google Scholar

show all references

References:
[1]

F. Brauer and P. van den Driessche, Models for transmission of disease with immigration of infectives,, Math. Biosci., 171 (2001), 143.  doi: 10.1016/S0025-5564(01)00057-8.  Google Scholar

[2]

R. D. Demasse and A. Ducrot, An age-structured within-host model for multistrain malaria infections,, SIAM J. Appl. Math., 73 (2013), 572.  doi: 10.1137/120890351.  Google Scholar

[3]

Z. Feng and H. Thieme, Endemic models with arbitrarily distributed periods of infection I: Fundamental properties of the model,, SIAM J. Appl. Math., 61 (2000), 803.  doi: 10.1137/S0036139998347834.  Google Scholar

[4]

H. Guo and M. Y. Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2413.  doi: 10.3934/dcdsb.2012.17.2413.  Google Scholar

[5]

H. Guo and J. Wu, Persistent high incidence of tuberculosis among immigrants in a low-incidence country: impact of immigrants with early or late latency., Math. Biosci. Eng., 8 (2011), 695.  doi: 10.3934/mbe.2011.8.695.  Google Scholar

[6]

S. Henshaw and C. C. McCluskey, Global stability of a vaccination model with immigration,, Elect. J. Diff. Eqns., 2015 (2015), 1.   Google Scholar

[7]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics,, Proc. R. Soc. London, 115 (1927), 700.   Google Scholar

[8]

A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence,, Math. Biosci. Eng., 1 (2004), 57.  doi: 10.3934/mbe.2004.1.57.  Google Scholar

[9]

P. Magal and C. C. McCluskey, Two-group infection age model including an application to nosocomial infection,, SIAM J. Appl. Math., 73 (2013), 1058.  doi: 10.1137/120882056.  Google Scholar

[10]

P. Magal, C. C. McCluskey and G. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Applicable Analysis, 89 (2010), 1109.  doi: 10.1080/00036810903208122.  Google Scholar

[11]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay - distributed or discrete,, Nonlinear Anal. RWA, 11 (2010), 55.  doi: 10.1016/j.nonrwa.2008.10.014.  Google Scholar

[12]

C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes,, Math. Biosci. Eng., 9 (2012), 819.  doi: 10.3934/mbe.2012.9.819.  Google Scholar

[13]

C. C. McCluskey and P. van den Driessche, Global analysis of two tuberculosis models,, J. Dynam. Differential Equations, 16 (2004), 139.  doi: 10.1023/B:JODY.0000041283.66784.3e.  Google Scholar

[14]

G. Röst and J. Wu, SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. and Eng., 5 (2008), 389.  doi: 10.3934/mbe.2008.5.389.  Google Scholar

[15]

R. P. Sigdel and C. C. McCluskey, Disease dynamics for the hometown of migrant workers,, Math. Biosci. Eng., 11 (2014), 1175.  doi: 10.3934/mbe.2014.11.1175.  Google Scholar

[16]

R. P. Sigdel and C. C. McCluskey, Global stability for an SEI model of infectious disease with immigration,, Appl. Math. Comput., 243 (2014), 684.  doi: 10.1016/j.amc.2014.06.020.  Google Scholar

[17]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence,, Amer. Math. Soc., (2011).   Google Scholar

[18]

H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS?,, SIAM J. Appl. Math., 53 (1993), 1447.  doi: 10.1137/0153068.  Google Scholar

[19]

Lin Wang and Xiao Wang, Influence of temporary migration on the transmission of infectious diseases in a migrants' home village,, J. Theoret. Biol., 300 (2012), 100.  doi: 10.1016/j.jtbi.2012.01.004.  Google Scholar

[20]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics,, Marcel Dekker, (1985).   Google Scholar

[1]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[2]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[3]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[4]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[5]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[6]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[7]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[8]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[9]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[10]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[11]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[12]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[13]

Qiang Fu, Xin Guo, Sun Young Jeon, Eric N. Reither, Emma Zang, Kenneth C. Land. The uses and abuses of an age-period-cohort method: On the linear algebra and statistical properties of intrinsic and related estimators. Mathematical Foundations of Computing, 2020  doi: 10.3934/mfc.2021001

[14]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[15]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[16]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[17]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[18]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[19]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[20]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]