2016, 13(2): 381-400. doi: 10.3934/mbe.2015008

Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds

1. 

Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada

Received  May 2015 Revised  September 2015 Published  December 2015

We study a model of disease transmission with continuous age-structure for latently infected individuals and for infectious individuals and with immigration of new individuals into the susceptible, latent and infectious classes. The model is very appropriate for tuberculosis. A Lyapunov functional is used to show that the unique endemic equilibrium is globally stable for all parameter values.
Citation: C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008
References:
[1]

F. Brauer and P. van den Driessche, Models for transmission of disease with immigration of infectives,, Math. Biosci., 171 (2001), 143.  doi: 10.1016/S0025-5564(01)00057-8.  Google Scholar

[2]

R. D. Demasse and A. Ducrot, An age-structured within-host model for multistrain malaria infections,, SIAM J. Appl. Math., 73 (2013), 572.  doi: 10.1137/120890351.  Google Scholar

[3]

Z. Feng and H. Thieme, Endemic models with arbitrarily distributed periods of infection I: Fundamental properties of the model,, SIAM J. Appl. Math., 61 (2000), 803.  doi: 10.1137/S0036139998347834.  Google Scholar

[4]

H. Guo and M. Y. Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2413.  doi: 10.3934/dcdsb.2012.17.2413.  Google Scholar

[5]

H. Guo and J. Wu, Persistent high incidence of tuberculosis among immigrants in a low-incidence country: impact of immigrants with early or late latency., Math. Biosci. Eng., 8 (2011), 695.  doi: 10.3934/mbe.2011.8.695.  Google Scholar

[6]

S. Henshaw and C. C. McCluskey, Global stability of a vaccination model with immigration,, Elect. J. Diff. Eqns., 2015 (2015), 1.   Google Scholar

[7]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics,, Proc. R. Soc. London, 115 (1927), 700.   Google Scholar

[8]

A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence,, Math. Biosci. Eng., 1 (2004), 57.  doi: 10.3934/mbe.2004.1.57.  Google Scholar

[9]

P. Magal and C. C. McCluskey, Two-group infection age model including an application to nosocomial infection,, SIAM J. Appl. Math., 73 (2013), 1058.  doi: 10.1137/120882056.  Google Scholar

[10]

P. Magal, C. C. McCluskey and G. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Applicable Analysis, 89 (2010), 1109.  doi: 10.1080/00036810903208122.  Google Scholar

[11]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay - distributed or discrete,, Nonlinear Anal. RWA, 11 (2010), 55.  doi: 10.1016/j.nonrwa.2008.10.014.  Google Scholar

[12]

C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes,, Math. Biosci. Eng., 9 (2012), 819.  doi: 10.3934/mbe.2012.9.819.  Google Scholar

[13]

C. C. McCluskey and P. van den Driessche, Global analysis of two tuberculosis models,, J. Dynam. Differential Equations, 16 (2004), 139.  doi: 10.1023/B:JODY.0000041283.66784.3e.  Google Scholar

[14]

G. Röst and J. Wu, SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. and Eng., 5 (2008), 389.  doi: 10.3934/mbe.2008.5.389.  Google Scholar

[15]

R. P. Sigdel and C. C. McCluskey, Disease dynamics for the hometown of migrant workers,, Math. Biosci. Eng., 11 (2014), 1175.  doi: 10.3934/mbe.2014.11.1175.  Google Scholar

[16]

R. P. Sigdel and C. C. McCluskey, Global stability for an SEI model of infectious disease with immigration,, Appl. Math. Comput., 243 (2014), 684.  doi: 10.1016/j.amc.2014.06.020.  Google Scholar

[17]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence,, Amer. Math. Soc., (2011).   Google Scholar

[18]

H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS?,, SIAM J. Appl. Math., 53 (1993), 1447.  doi: 10.1137/0153068.  Google Scholar

[19]

Lin Wang and Xiao Wang, Influence of temporary migration on the transmission of infectious diseases in a migrants' home village,, J. Theoret. Biol., 300 (2012), 100.  doi: 10.1016/j.jtbi.2012.01.004.  Google Scholar

[20]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics,, Marcel Dekker, (1985).   Google Scholar

show all references

References:
[1]

F. Brauer and P. van den Driessche, Models for transmission of disease with immigration of infectives,, Math. Biosci., 171 (2001), 143.  doi: 10.1016/S0025-5564(01)00057-8.  Google Scholar

[2]

R. D. Demasse and A. Ducrot, An age-structured within-host model for multistrain malaria infections,, SIAM J. Appl. Math., 73 (2013), 572.  doi: 10.1137/120890351.  Google Scholar

[3]

Z. Feng and H. Thieme, Endemic models with arbitrarily distributed periods of infection I: Fundamental properties of the model,, SIAM J. Appl. Math., 61 (2000), 803.  doi: 10.1137/S0036139998347834.  Google Scholar

[4]

H. Guo and M. Y. Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2413.  doi: 10.3934/dcdsb.2012.17.2413.  Google Scholar

[5]

H. Guo and J. Wu, Persistent high incidence of tuberculosis among immigrants in a low-incidence country: impact of immigrants with early or late latency., Math. Biosci. Eng., 8 (2011), 695.  doi: 10.3934/mbe.2011.8.695.  Google Scholar

[6]

S. Henshaw and C. C. McCluskey, Global stability of a vaccination model with immigration,, Elect. J. Diff. Eqns., 2015 (2015), 1.   Google Scholar

[7]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics,, Proc. R. Soc. London, 115 (1927), 700.   Google Scholar

[8]

A. Korobeinikov and P. K. Maini, A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence,, Math. Biosci. Eng., 1 (2004), 57.  doi: 10.3934/mbe.2004.1.57.  Google Scholar

[9]

P. Magal and C. C. McCluskey, Two-group infection age model including an application to nosocomial infection,, SIAM J. Appl. Math., 73 (2013), 1058.  doi: 10.1137/120882056.  Google Scholar

[10]

P. Magal, C. C. McCluskey and G. Webb, Lyapunov functional and global asymptotic stability for an infection-age model,, Applicable Analysis, 89 (2010), 1109.  doi: 10.1080/00036810903208122.  Google Scholar

[11]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay - distributed or discrete,, Nonlinear Anal. RWA, 11 (2010), 55.  doi: 10.1016/j.nonrwa.2008.10.014.  Google Scholar

[12]

C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes,, Math. Biosci. Eng., 9 (2012), 819.  doi: 10.3934/mbe.2012.9.819.  Google Scholar

[13]

C. C. McCluskey and P. van den Driessche, Global analysis of two tuberculosis models,, J. Dynam. Differential Equations, 16 (2004), 139.  doi: 10.1023/B:JODY.0000041283.66784.3e.  Google Scholar

[14]

G. Röst and J. Wu, SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. and Eng., 5 (2008), 389.  doi: 10.3934/mbe.2008.5.389.  Google Scholar

[15]

R. P. Sigdel and C. C. McCluskey, Disease dynamics for the hometown of migrant workers,, Math. Biosci. Eng., 11 (2014), 1175.  doi: 10.3934/mbe.2014.11.1175.  Google Scholar

[16]

R. P. Sigdel and C. C. McCluskey, Global stability for an SEI model of infectious disease with immigration,, Appl. Math. Comput., 243 (2014), 684.  doi: 10.1016/j.amc.2014.06.020.  Google Scholar

[17]

H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence,, Amer. Math. Soc., (2011).   Google Scholar

[18]

H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS?,, SIAM J. Appl. Math., 53 (1993), 1447.  doi: 10.1137/0153068.  Google Scholar

[19]

Lin Wang and Xiao Wang, Influence of temporary migration on the transmission of infectious diseases in a migrants' home village,, J. Theoret. Biol., 300 (2012), 100.  doi: 10.1016/j.jtbi.2012.01.004.  Google Scholar

[20]

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics,, Marcel Dekker, (1985).   Google Scholar

[1]

C. Connell McCluskey. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. Mathematical Biosciences & Engineering, 2012, 9 (4) : 819-841. doi: 10.3934/mbe.2012.9.819

[2]

Yicang Zhou, Zhien Ma. Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences & Engineering, 2009, 6 (2) : 409-425. doi: 10.3934/mbe.2009.6.409

[3]

Shanjing Ren. Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1337-1360. doi: 10.3934/mbe.2017069

[4]

Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369

[5]

Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009

[6]

Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641

[7]

Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449-469. doi: 10.3934/mbe.2014.11.449

[8]

Suxia Zhang, Hongbin Guo, Robert Smith?. Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1291-1313. doi: 10.3934/mbe.2018060

[9]

Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643

[10]

C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603

[11]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[12]

Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019214

[13]

Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173

[14]

Georgi Kapitanov. A double age-structured model of the co-infection of tuberculosis and HIV. Mathematical Biosciences & Engineering, 2015, 12 (1) : 23-40. doi: 10.3934/mbe.2015.12.23

[15]

Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with generalized nonlinear incidence and vaccination age. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 977-996. doi: 10.3934/dcdsb.2016.21.977

[16]

Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1083-1106. doi: 10.3934/mbe.2015.12.1083

[17]

Jinliang Wang, Xianning Liu, Toshikazu Kuniya, Jingmei Pang. Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2795-2812. doi: 10.3934/dcdsb.2017151

[18]

Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859

[19]

Jacek Banasiak, Eddy Kimba Phongi, MirosŁaw Lachowicz. A singularly perturbed SIS model with age structure. Mathematical Biosciences & Engineering, 2013, 10 (3) : 499-521. doi: 10.3934/mbe.2013.10.499

[20]

Tarik Mohammed Touaoula. Global stability for a class of functional differential equations (Application to Nicholson's blowflies and Mackey-Glass models). Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4391-4419. doi: 10.3934/dcds.2018191

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]